A Sequence of Solutions
In this answer, all the points where $x^y=y^x\iff x^{1/x}=y^{1/y}\iff (1/x)^{1/x}=(1/y)^{1/y}$ are given when $x=t^{\frac1{t-1}}$ and $y=t^{\frac t{t-1}}$. This gives $a$ and $b$, where $a^a=b^b$ when $a=t^{\frac1{1-t}}$ and $b=t^{\frac t{1-t}}$. If we set $t=\frac{n-1}n$, we get
$$
\begin{align}
a_n&=\left(\frac{n-1}n\right)^n\tag{1a}\\
b_n&=\left(\frac{n-1}n\right)^{n-1}\tag{1b}
\end{align}
$$
which are rational if $n\in\mathbb{N}$, and
$$
{a_n}^{a_n}={b_n}^{b_n}=\left(\frac{n-1}n\right)^{n\left(\frac{n-1}n\right)^n}\tag2
$$
Monotonic Convergence
Furthermore, in this answer it is shown that $\left(\frac{n+1}n\right)^n$ is increasing and $\left(\frac{n+1}n\right)^{n+1}$ is decreasing. Taking reciprocals and substituting $n\mapsto n-1$, we get $a_n=\left(\frac{n-1}n\right)^n$ is increasing and $b_n=\left(\frac{n-1}n\right)^{n-1}$ is decreasing. That is,
$$
a_n\lt\frac1e\lt b_n\tag3
$$
Completeness
We wish to show that the solutions given in $(1)$, with $n\in\mathbb{N}$, are all the rational solutions.
If both $a_n$ and $b_n$ are rational, then $\frac{n-1}n=\frac{a_n}{b_n}\in\mathbb{Q}$, and therefore, $n=\frac{b_n}{b_n-a_n}\in\mathbb{Q}$.
Let $n=\frac pq$ where $p,q\in\mathbb{N}$ and $(p,q)=1$. $\text{(1a)}$ becomes
$$
a_n=\left(\frac{p-q}p\right)^{p/q}\tag4
$$
Bezout says there are $c,d\in\mathbb{Z}$ so that $cp+dq=1$. Since $a_n$ and $\frac{p-q}p$ are rational,
$$
a_n^c\left(\frac{p-q}p\right)^d=\left(\frac{p-q}p\right)^{1/q}=\frac uv\tag5
$$
where $u,v\in\mathbb{N}$ and $(u,v)=1$. Since $0\lt\frac uv\lt1$, we have $0\lt u\lt v$.
$(5)$ implies $p=v^q$ and $p-q=u^q$. Since $u\ge1$ and $v-u\ge1$, we have $v\ge2$ and
$$
\begin{align}
q
&=v^q-u^q\tag{6a}\\
&=\underbrace{\ (v-u)\ \vphantom{\left(q^1\right)}}_{\ge1}\underbrace{\left(v^{q-1}+uv^{q-2}+\dots+u^{q-1}\right)}_{\ge 2^q-1}\tag{6b}
\end{align}
$$
$q\ge2^q-1\implies q=1\implies n\in\mathbb{N}$.