Simplify the following expression $\frac{1}{||\partial_u \vec{X}||}\partial_u(\frac{\partial_u \vec{X}}{||\partial_u \vec X||})$
My attempt:- Let $\vec{X}=(X_1,X_2,...,X_n)$
$\frac{1}{||\partial_u \vec{X}||}\partial_u(\frac{\partial_u \vec{X}}{||\partial_u \vec X||})=\frac{1}{||\partial_u \vec{X}||}\partial_u(\frac{\partial_u X_1}{||\partial_u \vec{X}||},\frac{\partial_u X_2}{||\partial_u \vec{X}||},...,\frac{\partial_u X_n}{||\partial_u \vec{X}||})$
$=\frac{1}{||\partial_u \vec{X}||}(...,\partial_u(\frac{\partial_u X_n}{||\partial_u \vec{X}||)}))$
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||\partial_u(\partial_u {X_n})-\partial_u {X_n}\partial(||\partial_u \vec{X}||)}{||\partial_u \vec{X}||^2})$ ($\because $ by quotient rule of partial differentiation)
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||\partial_u(\partial_u {X_n})-\partial_u {X_n}\partial(||\partial_u \vec{X}||)}{||\partial_u \vec{X}||^2})$
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||\partial_u(\partial_u {X_n})-\partial_u {X_n}\partial_u(||\partial_u \vec{X}||)}{||\partial_u \vec{X}||^2})$
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||\partial_u(\partial_u {X_n})-\partial_u {X_n}(\frac{\vec{w}^T\partial_u \vec{w}}{||\vec{w}||})}{||\partial_u \vec{X}||^2})$ ($\because$ Result, Let $\vec{w}=\partial_u \vec{X})$
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||\partial_u(\partial_u {X_n})-\partial_u {X_n}(\frac{\partial_u \vec{X}^T}{||\partial_u \vec{X}||})\partial_u \partial_u \vec{X}}{||\partial_u \vec{X}||^2})$
$=\frac{1}{||\partial_u \vec{X}||}(...,\frac{||\partial_u \vec{X}||(\partial_u^2 {X_n})-\partial_u {X_n}(\frac{\partial_u \vec{X}^T\partial_u^2 \vec{X}}{||\partial_u \vec{X}||})}{||\partial_u \vec{X}||^2})$
My questions: Is my calculations correct? Am I able to reduce further? Please help me.