Find the general solution of the differential equations
$$\left \{\begin{matrix}\dfrac{dx}{dt} & = & x-2y, \\ \dfrac{dy}{dt} & = & 2x+5y.\end{matrix}\right .$$
So far, I was able to find the eigenvalues to be $3$ (with multiplicity $2$). Also, I think the eigenvector is $(-1,1)$.
\end{array} \right) \left( \begin{array}{rr} -\frac{1}{2} & 0 \ 1 & 1 \
\end{array} \right) = \left( \begin{array}{rr} 1 & 0 \ 0 & 1 \
\end{array} \right) $$
$$ \left( \begin{array}{rr} -2 & 0 \ 2 & 1 \
– Will Jagy Apr 18 '23 at 16:03\end{array} \right) \left( \begin{array}{rr} 3 & 1 \ 0 & 3 \
\end{array} \right) \left( \begin{array}{rr} -\frac{1}{2} & 0 \ 1 & 1 \
\end{array} \right) = \left( \begin{array}{rr} 1 & -2 \ 2 & 5 \
\end{array} \right) $$