For $x, z \in \mathbb R^n$ and we have
\begin{align*}
z^T \nabla^2 f(x) z
& = \frac{\| z \|_2^2}{(1 + \| x \|_2^2)^2}
- \frac{4 \| z^T x \|_2^2}{(1 + \| x \|_2^2)^3} \\
& \ge \left(\frac{1}{(1 + \| x \|_2^2)^2}
- \frac{4 \| x \|_2^2}{(1 + \| x \|_2^2)^3}\right) \| z \|_2^2 \\
& = \left(\frac{1 - 3 \| x \|_2^2}{(1 + \| x \|_2^2)^3}\right) \| z \|_2^2.
\end{align*}
This term is nonnegative if and only if $\frac{1 - 3 \| x \|_2^2}{(1 + \| x \|_2^2)^3} \ge 0$, that is, $\| x \|_2 \le \frac{1}{\sqrt{3}}$, so on the ball centered at the origin with radius $\frac{1}{\sqrt{3}}$, $f$ is convex.
For strong convexity, let $m \in [0, 1)$ be fixed.
We want to find out for which values of $x$, the function
$$
x \mapsto \frac{1 - 3 \| x \|_2^2}{(1 + \| x \|_2^2)^3}
$$
is lower bounded by $m$.
Note that it is upper bounded by 1, so we only consider $m \in (0, 1)$ in the sequel.
With $y := \| x \|_2^2 \ge 0$ this can be rewritten as
$$
1 - m - 3 m y - 3 y - 3 m y^2 - m y^3 \ge 0,
$$
which (as $m \in (0, 1)$) is, according to WolframAlpha equivalent to
$$
0 < \| x \|_2^2 \le \frac{1}{m}\left(2 m^2 + \sqrt{4 m^4 + m^3}\right)^{\frac{1}{3}} - \left(2 m^2 + \sqrt{4 m^4 + m^3}\right)^{-\frac{1}{3}} - 1.
$$
When plugging in $m = \frac{1}{2}$ into the right hand side, the upper bound is approximately $0.1$, so that for $\| x \|_2^2 \le \frac{1}{10}$ the function is $\frac{1}{2}$-strongly convex.