Notations:
$\mathcal{M}_n(\Bbb{R}) $: the set of all $n×n$ matrices over $\Bbb{R}$
$\chi_A(x)$: Characteristic polynomial of $A$
$m_A(x)$ : Minimal polynomial of $A$
$A\sim B$ : $\exists P\in Gl_n(\Bbb{R})$ such that $B=P^{-1}AP$
Conjecture: $(\forall A, B\in \mathcal{M}_n(\Bbb{R})$ with $\chi_A=\chi_B$ and $m_A=m_B$ implies $A\sim B) $implies $n\le 3$
Attempt:
Let's work with converse.
For $n\ge 4,\exists A, B\in\mathcal{M}_n(\Bbb{R}) $ with $\chi_A=\chi_B$ and $m_A=m_B$ such that $A\not\sim B\tag{1}$
Special cases :
$\boxed{n=4}:$
$A=\left(\begin{array}{cccc} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 \end{array}\right)$
$B= \left(\begin{array}{cccc} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right)$
$$\chi_A(x) =x^4=\chi_B(x) $$ and $$m_A(x) =x^2=m_B(x) $$
$\begin{align}\textrm{rank}(A)=2\neq 1=\textrm{rank}(B) &\implies A\not\sim B\\\end{align}$
$\boxed{n=5}$:
$A=\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$
$B= \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$
$$\chi_A(x) =x^5=\chi_B(x) $$ and $$m_A(x) =x^2=m_B(x) $$
$\begin{align}\textrm{rank}(A)=2\neq 1=\textrm{rank}(B) &\implies A\not\sim B\\\end{align}$
$\boxed{\text{General cases}(n\ge 4)}$:
Strategy: Find two nilpotent matrices $A,B \in \mathcal{M}_n(\Bbb{R})$ with degree of nilpotency $2$ and $\textrm{rank}(A) \neq \textrm{rank}(B)$
$A=(a_{ij}) $ and $B=(b_{ij}) $
where $a_{ij}=\begin{cases} 1 &(i,j)\in\{(2,1),(n-1,n)\}\\0& \text{otherwise}\end{cases}$
$b_{ij}=\begin{cases} 1 &(i,j) =(2,1)\\0& \text{otherwise}\end{cases}$
Then $$\chi_A(x) =x^n=\chi_B(x) $$ and $$m_A(x) =x^2=m_B(x) $$
$\begin{align}\textrm{rank}(A)=2\neq 1=\textrm{rank}(B) &\implies A\not\sim B\\\end{align}$
For $n\le 3$ and $\forall A,B\in\mathcal{M}_n(\Bbb{R})$ with $\chi_A=\chi_B $ and $m_A =m_B $ implies $A\sim B $(here)$\tag{2}$
Conclusion: $(1) $ and $(2) $ together implies that the conjecture is true.
Question:
- Is my attempt correct?
- What about the direct proof $[$ starting with any two matrices having the said properties and then showing $\textrm{deg}(\chi_A) =\textrm{deg}(\chi_B)\le 3]$ ?
Note: Two matrices are similar iff both have the same Jordan normal form upto the permutation of Jordan blocks.