I've been trying to prove the following proposition: $$\lim _{n\to \infty }\left(x_n\right)=0\:\:\rightarrow \:\lim _{n\to \infty }\left(\frac{x_1+x_2+...+x_n}{n}\right)=0$$
This is a proof sketch, about which I feel a bit uncertain:
$$\left|\frac{x_1+x_2+...+x_n}{n}-0\right|=\left|\frac{x_1+x_2+...+x_n}{n}\right|=\frac{\left|x_1+x_2+...+x_n\right|}{n}$$ Applying the triangle inequality:
$$\frac{\left|x_1+x_2+...+x_n\right|}{n}\:\le _{ }\:\frac{\left|x_1\right|+\left|x_2\right|+...+\left|x_n\right|}{n}$$ $x_n$ is bounded, thus there exists some $M>0$ such that $\left|x_n\right|<M$ for all $n\in \mathbb{N}$, and therefore: $$\frac{\left|x_1\right|+\left|x_2\right|+...+\left|x_n\right|}{n}\le _{\:\:}\frac{\left(n-1\right)M\:+\left|x_n\right|}{n}\:\le M\:+\frac{\left|x_n\right|}{n}\le M+\left|x_n\right|$$
$x_n\rightarrow 0,\:$thus$\:\forall \:\left(ϵ-M\right)\:>0,\:\:\exists \:N\in \mathbb{R}\:$such that$\:\left|x_n\right|<ϵ-M$, and therefore:
$$\left|\frac{x_1+x_2+...+x_n}{n}\right|<...<M\:+\left|x_n\right|<ϵ$$
I'd be really glad for reviews and corrections if I've had any mistakes somewhere, it would be very helpful. Thanks!