This can be proved by induction.
If $m=4$, then $\binom{2m}{m}=70$ and $2^{2m}\frac{2m-1}{6m}=\frac{224}{3}$. And $70=\frac{210}3<\frac{224}{3}$.
Now, take $m\in\mathbb{N}$ and assume that
$$
\binom{2m}m\le2^{2m}\frac{2m-1}{6m}.\label{ineq}\tag1
$$Then, since
$$
\binom{2(m+1)}{m+1}=\binom{2m}m\times\frac{4m+2}{m+1}
$$
and
$$2^{2(m+1)}\frac{2(m+1)-1}{6(m+1)}=2^{2m}\frac{2m-1}{6m}\times\frac{4m(2m+1)}{(m+1)(2m-1)}
$$
then, in order to deduce from \eqref{ineq} that
$$
\binom{2(m+1)}{m+1}\le2^{2(m+1)}\frac{2(m+1)-1}{6(m+1)},
$$
it is enough to prove that
$$
\frac{4m+2}{m+1}\le\frac{4m(2m+1)}{(m+1)(2m-1)}.
$$
But we have
\begin{align}
\frac{4m+2}{m+1}\le\frac{4m(2m+1)}{(m+1)(2m-1)}&\iff2(2m+1)\le\frac{4m(2m+1)}{2m-1}\\
&\iff2\le\frac{4m}{2m-1}\\
&\iff4m-2\le4m,
\end{align}
and this is a true statement.