2

The above integral appeared while trying to calculate the Fisher-information of a Cauchy-distributed sample in my statistics homework. I plugged it into Wolfram Alpha, which gives the answer $\frac \pi 8$, and it's also able to find the indefinite integral, but I'm unable to infer what method it used.

So far, I have tried substituting a couple things, such as $(1 + x^2)$, $x^2$, or $(1 + x^2)^3$, but nothing seems to have worked. I also tried integrating by parts, integrating the $x^2$ on the top and differentiating the denominator, but this also doesn't work out. I also tried splitting the integral by writing the $x^2$ in the nominator as $(1 + x^2) - 1$, but this isn't fruitful either.

I am of course aware that I'm supposed to get an $\arctan$ somewhere in there, but I have no idea how to sneak it into the expression.

I'm sure someone among the userbase here has faced a similar integral before, can I maybe get a hint on how to proceed? What is the trick here?

Arctic Char
  • 16,007
maritsm
  • 607

5 Answers5

5

You can compute it using residues. The function$$\begin{array}{rccc}f\colon&\Bbb C\setminus\{\pm i\}&\longrightarrow&\Bbb C\\&z&\mapsto&\dfrac{z^2}{(z^2+1)^3}\end{array}$$is a rational function whose numerator has degree $2$ and whose denominator has degree $6$; in particular, $\lim_{z\to\infty}zf(z)=0$. Furthermore, it has one and only one singularity in the upper half-plane, located at $i$. So\begin{align}\int_{-\infty}^\infty f(x)\,\mathrm dx&=2\pi i\operatorname{res}_{z=i}f(z)\\&=2\pi i\times\left(\frac{-i}{16}\right)\\&=\frac\pi8.\end{align}

  • Thanks so much! It completely slipped my mind that I can use complex methods to evaluate real integrals. That said though, this doesn't explain how Wolfram Alpha finds an antiderivative, since this method only gives the definite integral on the entire real line. – maritsm Apr 09 '23 at 09:36
  • 2
    Using the fact that$$(\forall x\in\Bbb R):\frac{x^2}{(x^2+1)^3}=\frac{1}{\left(x^2+1\right)^2}-\frac{1}{\left(x^2+1\right)^3}.$$Now, use the fact that$$\int\frac1{(x^2+1)^2},\mathrm dx=\frac{1}{2} \left(\frac{x}{x^2+1}+\arctan (x)\right)$$and that$$\int\frac1{(x^2+1)^3},\mathrm dx=\frac{1}{8} \left(\frac{3x^3+5x}{\left(x^2+1\right)^2}+3 \arctan(x)\right).$$ – José Carlos Santos Apr 09 '23 at 09:38
  • 1
    I was wondering, can't this definite integral be solved with the standard integration technique known in highschool? – lone student Apr 09 '23 at 09:43
  • @lonestudent What is “the standard integration technique known in highschool”? – José Carlos Santos Apr 09 '23 at 09:43
  • I mean, first finding the indefinite integral, then calculating the definite integral. – lone student Apr 09 '23 at 09:46
  • 1
    @lonestudent Sure. See my previous comment to the OP. – José Carlos Santos Apr 09 '23 at 09:47
5

My answer using elementary techniques:

$$I=\int\frac{x^2}{(1+x^2)^3}\mathrm dx$$ Substitute $t=\arctan(x)$ hence $x = \tan(t)$ and $dt = \frac{dx}{1+x^2} $, giving $$I=\int\frac{\tan^2(t)}{(1+\tan^2(t))^2}\mathrm dt$$ Since $\sec^2(t)=1+\tan^2(t)$: $$I=\int\frac{\tan^2(t)}{\sec^4(t)}\mathrm dt$$ $$I=\int\frac{\sin^2(t)}{\cos^2(t)}{\cos^4(t)}\mathrm dt$$ $$I=\int\sin^2(t)\cos^2(t)\mathrm dt$$ $$I=\int\sin^2(t)(1-\sin^2(t)\mathrm dt$$ $$I=\int\sin^2(t)dt-\int\sin^4(t)\mathrm dt$$

The rest of it is standard

maritsm
  • 607
Ayaan
  • 65
4

Because the integrand is even, your integral can be written as $\int_{-\infty}^\infty (...)=2\int_0^\infty (...)$. With this in mind consider the general integral $$F(p,q)=2\int_0^\infty \frac{x^{p}}{(1+x^2)^q}\mathrm dx$$ Substitute $t=x^2$, giving $$F(p,q)=\int_0^\infty \frac{t^{\frac{p-1}{2}}}{(1+t)^q}\mathrm dt$$ Recall the following integral representation of the Beta function: $$\mathrm B(u,v)=\int_0^\infty \frac{t^{u-1}}{(1+t)^{u+v}}\mathrm dt$$

From which we conclude $$F(p,q)=\mathrm B\left(\frac{p+1}{2}~,~q-\frac{p+1}{2}\right)$$

Hence, your integral is $$\int_{-\infty}^\infty \frac{x^2}{(1+x^2)^3}\mathrm dx=2\int_{0}^\infty \frac{x^2}{(1+x^2)^3}\mathrm dx \\ =F(2,3) \\ =\mathrm B\left(\frac{3}{2},\frac{3}{2}\right) \\ =\frac{\Gamma(3/2)\Gamma(3/2)}{\Gamma(3/2+3/2)} \\ =\frac{\left(\frac{1}{2}\Gamma(1/2)\right)^2}{\Gamma(3)} \\ =\boxed{\frac{\pi}{8}}$$

K.defaoite
  • 12,536
3

Let $I_n=\int\frac{dx}{(x^2+1)^n}.$

$$I_n=\frac x{(x^2+1)^n}+2n\int\frac{x^2dx}{(x^2+1)^{n+1}}=\frac x{(x^2+1)^n}+2n(I_n-I_{n+1}).$$

0

$$\begin{align*} &\int_{-\infty}^\infty \frac{x^2}{(1+x^2)^3} \, dx \\ &= 2 \int_0^\infty \frac{x^2}{(1+x^2)^3} \, dx \tag1 \\ &= 4 \int_{-1}^1 \frac{\frac{(1-y)^2}{(1+y)^2}}{\left(1+\frac{(1-y)^2}{(1+y)^2}\right)^3(1+y)^2} \, dy \tag2\\ &= \frac12 \int_{-1}^1 \frac{(1-y^2)^2}{(1+y^2)^3} \, dy \\ &= \int_0^1 \frac{(1-y^2)^2}{(1+y^2)^3} \, dy \tag1 \\ &= \frac12 \sum_{n=0}^\infty (-1)^n (n+2) (n+1) \int_0^1 (1-y^2)^2 y^{2n} \, dy \tag3 \\ &= \frac12 \sum_{n=0}^\infty (-1)^n (n+2)(n+1) \left(\frac1{2n+1} - \frac2{2n+3} + \frac1{2n+5}\right) \\ &= \frac38 \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} + \frac14 \sum_{n=0}^\infty \frac{(-1)^n}{2n+3} + \frac38 \sum_{n=0}^\infty \frac{(-1)^n}{2n+5} \tag4 \\ &= \left\{\frac38 \sum_{n=0}^\infty - \frac14 \sum_{n=1}^\infty + \frac38 \sum_{n=2}^\infty\right\} \frac{(-1)^n}{2n+1} \tag5 \\ &= \frac38 \arctan(1) - \frac14 \left(\arctan(1) - 1\right) + \frac38 \left(\arctan(1) - 1 + \frac13\right) = \boxed{\frac\pi8} \tag6 \end{align*}$$


  • $(1)$ : symmetry
  • $(2)$ : substitute $x=\dfrac{1-y}{1+y}$
  • $(3)$ : exploit the Maclaurin series of $\dfrac1{1-y}$
  • $(4)$ : partial fractions
  • $(5)$ : shift indices on the latter sums
  • $(6)$ : recall the Maclaurin series for $\arctan$
user170231
  • 19,334