Prove that $\mathfrak{sl}(3,F)$ is simple, unless $\operatorname{char}F=3$. [Use the standard basis $h_1,h_2,e_{ij}(i\neq j)$. If $I\ne 0$ is an ideal, then $I$ is the direct sum of eigenspaces for $\operatorname{ad}h_1$ or $\operatorname{ad}h_2$; compare the eigenvalues of $\operatorname{ad}h_1$, $\operatorname{ad}h_2$ acting on the $e_{ij}$.]
We have $h_1=e_{11}-e_{22}$ and $h_2=e_{22}-e_{33}$
So I found the following:
$\operatorname{ad}h_1(e_{12})=2e_{12}$, $\operatorname{ad}h_1(e_{13})=e_{13}$, $\operatorname{ad}h_1(e_{21})=-2e_{21}$, $\operatorname{ad}h_1(e_{23})=-e_{23}$, $\operatorname{ad}h_1(e_{31})=-e_{31}$, $\operatorname{ad}h_1(e_{32})=e_{32}$
And for $h_2$:
$\operatorname{ad}h_2(e_{12})=-e_{12},\operatorname{ad}h_2(e_{13})=e_{13}$, $\operatorname{ad}h_2(e_{21})=e_{21}$, $\operatorname{ad}h_{2}(e_{23})=2e_{23}$, $\operatorname{ad}h_{2}(e_{31})=-e_{31}$, $\operatorname{ad}h_{2}(e_{32})=-2e_{32}$
Both sets of eigenvalues are $2,1,1,-1,-1,-2$. I don't understand how to tie this into the ideal $I$.