Every time I’ve read about the staircase paradox it refers to dividing the horizontal and vertical legs of the square by repeated integer divisions. Their lengths are of the form a/b, with a usually equal to 1. I think the idea is that the smallest rational number in a sequence cannot ever exactly equal zero.
I read the post <https://math.stackexchange.com/questions/12906/the-staircase-paradox-or-why-pi-ne4 > My post is about a reason why the statement below is true:
“The limiting curve is approached, but never reached.”
Hence the step function can never be the same as the line y=x.
Let f(x) be a mathematical function. Its input is a real number and its output is a large real number, R. by evaluating f(x) repeatedly, then taking the reciprocal of R, a sequence of small real numbers is generated. I’m sure this can be accomplished without the use of a computer. These would be the length of each step in successive constructions of the square.
This is my logic:
- On the real number line, there are infinitely many points on a line segment that is a subset of 0 to 1.
- For any two successive outputs of the function f(x) there exists a real number in between them.
- Between zero and the output of f(x) from the millionth execution of the function there is a real number.
- Between zero and any repeated evaluation of f(x) there is another real number.
- There is no smallest real number greater than zero.
- ---> steps cannot be eliminated no matter how small each step becomes. This is still true when the square legs are divided into segments, the lengths of which are of the form 1/R, as R->infinity. The only way to not have steps is to consider the entirely different curve: the actual diagonal.
I made the following assumptions:
- I’m speaking in terms of math only, not physics (and quantum mechanics).
- The fact that lines do not behave intuitively in the smallest infinitesimal (smaller than a “neighborhood”) means one can’t assign an accurate length to the smallest steps. It does not mean steps representing the application of the output of f(x) indefinitely don’t exist. An output of f(x), when executing indefinitely, called R^n and its reciprocal 1/R^n would not be actual numbers with a value. Therefore, it makes sense to say the length is not accurate, but the step still exists. The infinitesimal never assumes an actual number value. I have read the vague statement that there are an infinite number of points between two adjacent points. Even if adjacent points are difficult to distinguish geometrically, it can still be true in R2 every point is a distinct point, to be differentiated from others, no matter how small the neighborhood is and the space being non-discrete.