$$\begin{align} \tan\alpha+\cot\alpha=\sqrt{ 6 } \\ \tan^6\alpha+\cot^6\alpha= \ ? \end{align}$$
The given answer is $52$, but I got $214$ instead:
\begin{align} \tan\alpha+\cot\alpha=\frac{1}{\sin\alpha \cos\alpha}&=\sqrt{ 6 } \\ \\ \tan^6\alpha+\cot^6\alpha=\frac{\sin^6\alpha}{\cos^6\alpha}+\frac{\cos^6\alpha}{\sin^6\alpha}&= \\ \\ \frac{\sin^{12}\alpha+\cos^{12}\alpha}{\sin^6\alpha \cos^6\alpha}&= \\ \\ \frac{(\sin^3\alpha)^4+(\cos^3\alpha)^4}{\sin^6\alpha \cos^6\alpha}&= \\ \\ \frac{1-2\sin^6\alpha \cos^6\alpha}{\sin^6\alpha \cos^6\alpha}&= \\ \\ \frac{1}{\sin^6\alpha \cos^6\alpha}-2&= \\ \\ (\sqrt{ 6 })^6-2=216-2&=214 \end{align}
I know my method is not the most efficient, but my question is: what is wrong with my solution?