If $x$ is fixed in $\mathbb R^n$, we have, for $h\in\mathbb R^n$:
\begin{align} f(x+h)-f(x) &= (x+h\mid x+h)-(x\mid x)=\\
&= (x\mid x)+(x\mid h)+(h\mid x)+(h\mid h)-(x\mid x)=\\
&= 2(x\mid h)+(h\mid h)
\end{align}
so the differential (or derivative) $\;df(x)\;$ (or $f'(x)$) is the function $\;\mathbb R^n\to\mathbb R\;$ given by
$$df(x)(h) = 2(x\mid h) $$
since that function is linear, and, for $h\neq 0$
$$ \frac{(h\mid h)}{\|h\|} \leq \frac{\|h\|\,\|h\|}{\|h\|}=\|h\| \to 0 \;\;\text{ as }\;\;h\to 0.
$$
Note that
$$ df(x)(h)=2(x\mid h)=(2x\mid h)=(\nabla f(x)\mid h)
$$
so the gradient of $f$ in $x$ is given by
$$ \nabla f(x) = 2x=(2x_1, 2x_2,\ldots,2x_n).$$