0

This is that I did so far.If $d=\gcd(2k-1,9k+4)$ then:

$d \mid 2k-1$ and $d \mid 9k+4$ so $d \mid 2(9k+4)-9(2k-1)\implies d\mid 17$ so $d$ is $17$ for some values and $1$ for others.

After some observation I concluded that if $k=9+17n$ then $d=17$ and $d=1$ otherwise but I can’t prove it. Any help will be appreciated

Bill Dubuque
  • 272,048

1 Answers1

1

Do the Euclidean algorithm: add/subtract copies of one slot of $\gcd(-,-)$ from the other.

$$ \gcd(2k-1,9k+4) = \gcd(2k-1, 9k+4 - 4(2k-1)) = \gcd(2k-1, k+8) = \gcd(2k-1-2(k+8), k+8) = \gcd(-17, k+8). $$

Dennis
  • 1,358