Let $(\Omega, \mathcal F, \mu)$ be a measure space with $\mu(\Omega) < \infty$. Let $(f_n) \subset L^1(\Omega)$ and $f:\Omega \to \mathbb R$ be measurable such that $f_n \to f$ $\mu$-a.e. Let's call
Assumption 1: there is $r>0$ such that $$ \int |f_n| \le r \quad \forall n \in \mathbb N. $$
Assumption 2: $f_n \le f_{n+1}$ for all $n$ and there is $r>0$ such that $$ \int f_n \le r \quad \forall n \in \mathbb N. $$
If Assumption 1 holds, then $f \in L^1 (\Omega)$ by Fatou's lemma.
Does $f \in L^1 (\Omega)$ hold when we replace Assumption 1 with Assumption 2?