I need a closed form for the zeros of $$f(x)=2\sin\left(\frac{\pi}{6}-\frac{\sqrt{3} x}{2} \right)-e^{-\frac{3x}{2}} $$
Putting $x=0$, we see that $f(0)=0$. For the closed form of the remaining zeros we use the series expansion of $f(x)$ about $x=0$ and finally "reversion of series with nth term" (see here) to get a solution $x=x_i$, $i=1,2,3...$
$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!} x^n $$ where $f^{(0)}(0)=f(0)=0$ . So we have $$f^{(n)}(x)=\left(-\frac{\sqrt{3}}{2}\right)^n\sin\left(-\frac{\sqrt{3}x}{2}+\frac{\pi}{6}+\frac{n\pi}{2}\right)-\left(-\frac{3}{2}\right)^n e^{-\frac{3x}{2}} $$
$$f^{(n)}(0)=\left(-\frac{\sqrt{3}}{2}\right)^n\left[\sin\left(\frac{\pi}{6}+\frac{n\pi}{2}\right)-(\sqrt{3})^n\right] \tag{1}$$ Now we discuss two cases:
Case $1$: $n$ is even or $n=2m$ where $m\in \mathbb{N}\cup \{0\}$
$$f^{(n)}(0)=\left(-\frac{\sqrt{3}}{2}\right)^{2m}\left[\sin\left(\frac{\pi}{6}+m\pi\right)-(\sqrt{3})^{2m}\right] $$
$$f^{(n)}(0)=\left(\frac{\sqrt{3}}{2}\right)^{2m}\left[\frac{(-1)^m}{2}-(\sqrt{3})^{2m}\right] $$ $$f^{(n)}(0)=\left(\frac{3}{4}\right)^{m}\left[\frac{(-1)^m}{2}-3^{m}\right] \tag{2}$$
Case $2$: $n$ is odd or $n=2k+1$ where $k\in \mathbb{N}\cup\{0\}$ $$f^{(n)}(0)=-\left(\frac{\sqrt{3}}{2}\right)^{2k+1}\left[\sin\left(\frac{\pi}{6}+\frac{(2k+1)\pi}{2}\right)-(\sqrt{3})^{2k+1}\right] $$ Now we have $\sin\left(\frac{\pi}{6}+\frac{(2k+1)\pi}{2}\right)=\frac{\sqrt{3}}{2}(-1)^k$ $$f^{(n)}(0)=-\left(\frac{\sqrt{3}}{2}\right)^{2k+1}\left[\frac{\sqrt{3}}{2}(-1)^k-(\sqrt{3})^{2k+1}\right] $$ $$f^{(n)}(0)=-\left(\frac{3}{2}\right)\left(\frac{3}{4}\right)^{k}\left[\frac{(-1)^k}{2}-3^{k}\right] \tag{3}$$ $$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n=\sum_{m=0}^\infty\frac{f^{(2m)}(0)}{(2m)!}x^{2m}+\sum_{k=0}^\infty\frac{f^{(2k+1)}(0)}{(2k+1)!}x^{2k+1} $$ So by $(2)$ and $(3)$ $$f(x)=\sum_{m=0}^\infty\frac{\left(\frac{3}{4}\right)^{m}\left(\frac{(-1)^m}{2}-3^{m}\right)}{(2m)!}x^{2m}-\frac{3}{2}\sum_{k=0}^\infty\frac{\left(\frac{3}{4}\right)^{k}\left(\frac{(-1)^k}{2}-3^{k}\right)}{(2k+1)!}x^{2k+1} $$ Edit I tried using Langrange inversion theorem but was unable to simply it further. Any help would be appreciated. Thank you.