0

Find a closed expression of a following sum ($n,m \in N$):

$$\sum\limits_{i=1}^{m} \binom{n+i}{n}$$

Tried to use Pascal Identity but sum continues to grow with more complex subsums:

$$\sum\limits_{i=1}^{m}\binom{n+i}{n}=m\binom{n+1}{n}+\sum\limits_{i=1}^{m-1}(m-i)\binom{n+i}{n-1}$$

Sil
  • 16,612

0 Answers0