(i) Find one solution of the congruence $x^{2}-3x+32\equiv 0\pmod {125}$.
(ii) Use your answer to part (i) to find two solutions of the congruence $x^{2}-3x+32\equiv 0\pmod {1000}$.
Answer:
(i) The congruence $x^{2}-3x+32\equiv 0\pmod {5}$ has solutions $r=1$ and $r=2$.
If $r=1$, let $a=1+5q$. Then $f(r)=30, k=6, f'(r)=-1, -q+6\equiv 0\pmod {5}$, so $q=1$ and $a=6$.
Now $6^{2}-3\cdot 6+32\equiv 0\pmod {25}$, so we have a solution mod $25$.
Now take $r=6, a=6+25q$. Then $f(r)=50, k=2, f'(r)=9, 9q+2\equiv 0\pmod {5}$, so $q=2$ and $a=56$.
So $x\equiv 56\pmod {125}$.
OR
If $r=2$, let $a=2+5q$, Then $f(r)=30, k=6, f'(r)=1, q+6\equiv 0\pmod {5}$, so $q=4$ and $a=22$.
Now $22^{2}-3.22+32\equiv 0\pmod {25}$, so we have a solution mod $25$.
Now take $r=22, a=22+25q$. Then $f(r)=450, k=18, f'(r)=41, 41q+18\equiv 0\pmod {5}$, so $q=2$ and $a=72$.
So $x\equiv 72\pmod {125}$.
(ii)
If $x^{2}-3x+32\equiv 0\pmod {1000}$, then $x^{2}-3x+32\equiv 0\pmod {125}$ and $x^{2}-3x+32\equiv 0\pmod {8}$.
Thus, $x\equiv 56$ or $72\pmod {125}$ and $x(x-3)\equiv 0\pmod {8}$, so $x\equiv 0$ or $3\pmod {8}$.
If $x\equiv 56\pmod {125}$ and $x\equiv 0\pmod {8}$, then $x\equiv 56\pmod {1000}$.
If $x\equiv 56\pmod {125}$ and $x\equiv 3\pmod {8}$, then $x\equiv 931\pmod {1000}$.
If $x\equiv 72\pmod {125}$ and $x\equiv 0\pmod {8}$, then $x\equiv 72\pmod {1000}$.
If $x\equiv 72\pmod {125}$ and $x\equiv 3\pmod {8}$, then $x\equiv 947\pmod {1000}$.
(Only two needed)
Above are the answers for these two problems (i) and (ii). But I do not understand how the congruence $x^{2}-3x+32\equiv 0\pmod {5}$ has solutions $r=1$ and $r=2$ in part (i). Also, I do not understand how $k=6$ and why $-q+6\equiv 0\pmod {5}$ in part (i). Lastly, I do not understand how to get $x\equiv 56\pmod {1000}, x\equiv 931\pmod {1000}, x\equiv 72\pmod {1000}, x\equiv 947\pmod {1000}$ in part (ii). Can anyone please explain these?