4

Consider the following two alternating sequences: $$ A=\bigg\lbrace f^{(1)1}(x),\cdot\cdot\cdot \bigg \rbrace \bigg|_{x=1/e}=\bigg \lbrace-1,2,-6,32,-320,4452,-70798, \cdot\cdot\cdot \bigg \rbrace$$

$$B=\bigg\lbrace f^{(1)1}(x),\cdot\cdot\cdot \bigg \rbrace \bigg|_{x=e}=\bigg \lbrace-1,10,-150,3088,-81220,2603748, \cdot\cdot\cdot \bigg \rbrace$$

for $f(x)=\exp\bigg(\frac{1}{\log x} \bigg)$ and $f^{(n)n}(x)$ means "nth derivative of the nth power of $f$" and where each term in $A$ is understood to be evaluated at $x=1/e$, and each term in $B$ is understood to be evaluated at $x=e.$

Are these numbers always even except the first term?

Are these numbers always integers?

Note that $f^{(4)2}(x)$ evaluated at $x=1/e$ is not integral. So not every combination gives an integral value. I'm not sure why this pattern occurs with the derivatives.

1 Answers1

2

We invoke the following lemma:

Lemma. Let $\mathcal{F}$ be a family of formal power series about $0$ defined as follows: $$ \mathcal{F} = \left\{ \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k \,\middle|\, a_k \in \mathbb{Z} \text{ for all } k \right\} $$ Then for any $f(x), g(x) \in \mathcal{F}$, the following properties hold:

  1. $f(x) + g(x) \in \mathcal{F}$.
  2. $f(x)g(x) \in \mathcal{F}$.
  3. $f(g(x)) \in \mathcal{F}$, provided $g(0) = 0$.

To make use of this lemma, we substitute $x = (t + 1)/e$ and note that

\begin{align*} A_n &= \left[ \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n \exp\left(\frac{n}{\log x} \right) \right]_{x=1/e} \\ &= \left[ \left(e \frac{\mathrm{d}}{\mathrm{d}t}\right)^n \exp\left(- \frac{n}{1 - \log (1+t)} \right) \right]_{t = 0} \\ &= \left[ \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^n \exp\left(n - \frac{n}{1 - \log (1+t)} \right) \right]_{t = 0}. \end{align*}

Now we note that both

$$ \log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \qquad\text{and}\qquad \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n $$

are members of $\mathcal{F}$. Moreover, $\log(1+0) = 0$. So by the lemma, we get

$$ \frac{1}{1-\log(1+x)} \in \mathcal{F}. $$

Using this and $\exp(x) \in \mathcal{F}$ together, it follows that $A_n \in \mathbb{Z}$ as desired.

For $B_n$'s, note that

\begin{align*} B_n &= \left[ \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n \exp\left(\frac{n}{\log x} \right) \right]_{x=e} \\ &= \left[ \left(e^{-1} \frac{\mathrm{d}}{\mathrm{d}t}\right)^n \exp\left(\frac{n}{\log (1+t) + 1} \right) \right]_{t = 0} \tag{$x=(1+t)e$} \\ &= \left[ \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^n \exp\left(-n + \frac{n}{1 + \log (1+t)} \right) \right]_{t = 0} \end{align*}

and a similar argument applies.


Proof of Lemma. Item 1 and 2 are straightforward, so we only focus on establishing Item 3. Since $g(0) = 0$, $h(x) = f(g(x))$ is a well-defined formal power series. Moreover, by the combinatorial form of Faà di Bruno's formula,

\begin{align*} h^{(n)}(0) = \sum_{\pi\in \Pi}f^{(|\pi|)}(0) \prod_{B \in \pi} g^{(|B|)}(0) \end{align*}

where the $\pi$ runs through the set $\Pi$ of all partitions of $\{ 1, 2, \ldots, n\} $, and $B \in \pi$ means the variable $B$ runs through the list of all of the "blocks" of the partition $\pi$. The hypothesis of the lemma tells that $f^{(j)}(0)$'s and $g^{(j)}(0)$'s are all integers, hence $h^{(n)}(0)$ is also an integer and the proof is done.

Sangchul Lee
  • 167,468