Prove $\forall a,b\in \mathrm{Z^{even}},$ if $a\not\equiv b (\mod 3)$ then $\frac{b-a}{2}\equiv 1 (\mod3)$
I think my above proof is wrong, I proceed to try some values, like
$2 \mod 3 = 2$,
$4 \mod 3 = 1$
$-2 \mod 3 = 1$,
$-4 \mod 3 = 2$
So if I let $a = -2$ and $b = 2$, $-2\not\equiv 2 (\mod 3)$ but $\frac{2-(-2)}{2} = 2\not\equiv 1 (\mod3)$. Is this a counter example to this question? So hence I just disprove this statement?
$a\equiv b\pmod{n}$
for $a\equiv b\pmod{n}$. – Shaun Mar 29 '23 at 12:32solution-verification
question to be on topic you must specify precisely which step in the proof you question, and why so. This site is not meant to be used as a proof checking machine. – Bill Dubuque Mar 29 '23 at 19:37