Let us take
$$
\mathbb{N} := \{ 1, 2, 3, \ldots \},
$$
and let the function $f \colon \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ have the following values:
$$
\begin{align}
& f(1) := (1, 1), \\
& f(2) := (1, 2), f(3) := (2, 1), \\
& f(4) := (1, 3), f(5) := (2, 2), f(6) := (3, 1), \\
& f(7) := (1, 4), f(8) := (2, 3), f(9) := (3, 2), f(10) := (4, 1), \\
& f(11) := (1, 5), f(12) := (2, 4), f(13) := (3, 3), f(14) := (4, 2), f(15) := (5, 1), \\
& \ldots.
\end{align}
$$
Apparently, this function $f$ is bijective.
How to find an explicit formula for this function? How to rigorously show that this function is bijective?
I know that the inverse function $f^{-1} \colon \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ is given by the formula $$ f^{-1} (m, n) := \frac{ (m+n -2 ) (m + n -1 ) }{2} + m. $$