Question:
How to Evaluate Integral $$\int\;\frac {x^m\ln(x)}{\cos(x)^2}\mathrm{d}x$$
My suggestion $$F(x)=\int\;\frac {x^m\ln(x)}{\cos(x)^2}\mathrm{d}x$$
integration by part
let $$\mathrm{d}u = \frac{1}{\cos(x)^2} \; \; v = x^m\ln(x)\\ \implies u =\tan(x) \; \; \mathrm{d}v = x^{m-1}(m\ln(x)+1)$$
$$F(x)=x^m\ln(x)\tan(x)-\int x^{m-1}\tan(x)(m\ln(x)+1)\mathrm{d}x$$
Help please