Hidden in the expression $$\dfrac 17 = 0.142857142857\cdots$$ is a geometric sequence.
The quick way of looking at this is to see that $142857$ can be broken up into $14$, $28$ and $57$, which is very close to $14$, $28$, and $56$; a geometric progression with a common ratio of $2$. The $1$ that would make $56$ into $57$ could come from the first $1$ of $112$ which would be the next number of the sequence $14$, $28$, $56$.
Here is the long way. Note that, starting with $0.14$, each row is $\dfrac{2}{100}$ times the previous row. If you add up the terms below the
horizontal line, you should get $\dfrac 17$.
$$\begin{array}{rrrrrrrrrrr}
0&. & 14& 28&57 &14 & 28& 57&\cdots & = &\dfrac 17\\
\hline \\
0&. & 14& & & & & &\cdots & =& 1 \cdot \dfrac{14}{10^ 2}\\[12pt]
0&. & 00& 28& & & & &\cdots & =& 2 \cdot \dfrac{14}{10^ 4}\\[12pt]
0&. & 00& 00& 56& & & &\cdots & =& 4 \cdot \dfrac{14}{10^ 6}\\[12pt]
0&. & 00& 00& 01& 12& & &\cdots & =& 8 \cdot \dfrac{14}{10^ {8}}\\[12pt]
0&. & 00& 00& 00& 02& 24& &\cdots & =& 16 \cdot \dfrac{14}{10^{10}}\\[12pt]
0&. & 00& 00& 00& 00& 04& 48&\cdots & =& 32 \cdot \dfrac{14}{10^{12}}\\[12pt]
0&. & 00& 00& 00& 00& 00& 08&\cdots & =& 64 \cdot \dfrac{14}{10^{14}}\\[12pt]
\end{array}$$
This suggests that
$ \dfrac 17 =
1 \cdot \dfrac{14}{10^2} +
2 \cdot \dfrac{14}{10^4} +
4 \cdot \dfrac{14}{10^6} +
8 \cdot \dfrac{14}{10^8} +
16 \cdot \dfrac{14}{10^{10}} +
32 \cdot \dfrac{14}{10^{12}} +
64 \cdot \dfrac{14}{10^{14}} + \cdots$
The sequence on the right is a geometric sequence with an initial term of
$t_0 = \dfrac{14}{100}$ and a common ratio of $r = \dfrac{2}{100}$. The sum is
$$ 0.\overline{142857} = \dfrac{t_0}{1-r}
= \dfrac{ \left( \dfrac{14}{100} \right) }{\left( \dfrac{98}{100} \right)}
=\dfrac 17 $$.