We will show that using Egorychev method
$$\sum_{k=0}^r {n\choose 2k} {n-2k\choose r-k}
= \sum_{k=r}^n {n\choose k} {2k\choose 2r}
\left(\frac{3}{4}\right)^{n-k} \left(\frac{1}{2}\right)^{2k-2r}.$$
Computation for LHS
We get for LHS
$$\sum_{k=0}^r {n\choose n-2k} {n-2k\choose r-k}
\\ = [z^n] (1+z)^n [w^r] (1+w)^n
\sum_{k\ge 0} z^{2k} \frac{w^k}{(1+w)^{2k}}.$$
Here we have extended to infinity due to the coefficient extractor in
$w$. We obtain
$$[z^n] (1+z)^n [w^r] (1+w)^n
\frac{1}{1-z^2 w/(1+w)^2}
\\ = [z^n] (1+z)^n [w^r] (1+w)^{n+2}
\frac{1}{(1+w)^2-wz^2}
\\ = [z^n] (1+z)^n [w^{2r}] (1+w^2)^{n+2}
\frac{1}{(1+w^2)^2-w^2z^2}
\\ = [z^n] (1+z)^n [w^{2r}] (1+w^2)^{n+2}
\frac{1}{1+wz+w^2}\frac{1}{1-wz+w^2}
\\ = - [z^n] (1+z)^n [w^{2r+2}] (1+w^2)^{n+2}
\frac{1}{z+(1+w^2)/w}\frac{1}{z-(1+w^2)/w}.$$
The contribution from $z$ is
$$\;\underset{z}{\mathrm{res}}\;
\frac{1}{z^{n+1}} (1+z)^n
\frac{1}{z+(1+w^2)/w}\frac{1}{z-(1+w^2)/w}.$$
Here the residue at infinity is zero so we may use minus the residues
at $z=\pm (1+w^2)/w.$ We get first
$$[w^{2r+2}] (1+w^2)^{n+2} (-1)^{n+1} \frac{w^{n+1}}{(1+w^2)^{n+1}}
\frac{(-1+w-w^2)^n}{w^n} \frac{1}{-2(1+w^2)/w}
\\ = \frac{1}{2} [w^{2r}] (w^2-w+1)^n
= \frac{1}{2} (-1)^{2r} [w^{2r}] (w^2-w+1)^n
\\ = \frac{1}{2} [w^{2r}] (w^2+w+1)^n.$$
and second
$$[w^{2r+2}] (1+w^2)^{n+2} \frac{w^{n+1}}{(1+w^2)^{n+1}}
\frac{(w^2+w+1)^n}{w^n} \frac{1}{2(1+w^2)/w}
\\ = \frac{1}{2} [w^{2r}] (w^2+w+1)^n.$$
Collecting everything,
$$[w^{2r}] (w^2+w+1)^n.$$
Computation for RHS
We have for RHS
$$\left(\frac{3}{4}\right)^n \left(\frac{1}{2}\right)^{-2r}
\sum_{k=r}^n {n\choose n-k} {2k\choose 2r}
\left(\frac{4}{3}\right)^k
\left(\frac{1}{2}\right)^{2k}
\\ = \left(\frac{3}{4}\right)^n \left(\frac{1}{2}\right)^{-2r}
[z^n] (1+z)^n [w^{2r}]
\sum_{k=r}^n z^k (1+w)^{2k}
\left(\frac{1}{3}\right)^k$$
We may lower $k$ to zero owing to the coefficient extractor in $w$ and
raise to infinity due to the extractor in $z$ to get
$$\left(\frac{3}{4}\right)^n \left(\frac{1}{2}\right)^{-2r}
[z^n] (1+z)^n [w^{2r}]
\frac{1}{1-z(1+w)^2/3}
\\ = 3^n 2^{2r-2n}
[z^n] (1+z)^n [w^{2r}]
\frac{1}{1-z(1+w)^2/3}
\\ = 2^{2r-2n}
[z^n] (1+3z)^n [w^{2r}]
\frac{1}{1-z(1+w)^2}
\\ = - 2^{2r-2n}
[z^n] (1+3z)^n [w^{2r}] \frac{1}{(1+w)^2}
\frac{1}{z-1/(1+w)^2}.$$
The contribution from $z$ is
$$\;\underset{z}{\mathrm{res}}\;
\frac{1}{z^{n+1}} (1+3z)^n \frac{1}{z-1/(1+w)^2}.$$
Here the residue at infinity is zero so we may use minus the residue at
$z=1/(1+w)^2$ to get
$$ 2^{2r-2n} [w^{2r}] \frac{1}{(1+w)^2}
(1+w)^{2n+2} (1+3/(1+w)^2)^n
\\ = 2^{2r-2n} [w^{2r}] (4+2w+w^2)^n
= 2^{-2n} [w^{2r}] (4+4w+4w^2)^n
\\ = [w^{2r}] (w^2+w+1)^n.$$
We have equality and thus the claim. Here we had some help from OEIS
A005714.