Let $(\Omega, \mathcal F, \mathbb P)$ be a probability space. Let $(S, d)$ be a Polish space and $\mathcal S$ its Borel $\sigma$-algebra.
Let $\mathcal A$ be a sub-$\sigma$-algebra of $\mathcal F$. Let $T:\Omega \to S$ be measurable. A map $\nu: S \times \mathcal A \to [0, 1]$ is called the regular conditional probability of $\mathcal A$ given $T$ if
- for every $s \in S$, we have $\nu(s, \cdot)$ is a probability measure on $\mathcal A$,
- for every $A \in \mathcal A$, we have $\nu(\cdot, A)$ is $\mathcal S$-measurable.
- for every $A \in \mathcal A$ and $B \in \mathcal S$, $$ \mathbb P [A \cap T^{-1} (B)] = \int_B \nu(s, A) \ \mathrm d (T_\sharp \mathbb P) (s), $$ where $T_\sharp \mathbb P$ is the push-forward of $\mathbb P$ by $T$.
Let $X, Y, Z:\Omega \to S$ be random variables. We say that $X$ and $Y$ are conditionally independent given $Z$ if $$ \mathbb P [X \in A, Y\in B |Z] = \mathbb P [X \in A |Z] \cdot \mathbb P [Y\in B |Z] \quad \text{a.s.} \quad \forall A, B \in \mathcal S. $$
Let $\mathcal A := \sigma (X, Y)$. Let $\nu: S \times \mathcal A \to [0, 1]$ be the conditional probability of $\mathcal A$ given $Z$.
Can we characterize the conditional independence of $X,Y$ given $Z$ by the map $\nu$?
Update: Now let $\mathcal A := \mathcal F$ and fix $s_0 \in S$. We have $$ \mathbb P [A \cap \{T=s_0\}] = \int_{\{s_0\}} \nu(s, A) \ \mathrm d (T_\sharp \mathbb P) (s) = v(s_0, A) \mathbb P [T=s_0]. $$
Hence $\nu (s_0, A) = \mathbb P[A | T=s_0]$. If $A = \{T=s_0\}$ then $\mathbb P[A | T=s_0]=1$. Hence $\nu (s_0, \{T=s_0\}) = 1$, i.e., $T=s_0$ under $\nu (s_0, \cdot)$.