The definite integral $\int_0^\infty e^{-x^2}\mathrm{d}x=\frac{\sqrt{\pi}}{2}$ is very typical. We have:
$$1-x^2 \leqslant e^{-x^2}(0 \leqslant x \leqslant 1), \quad e^{-x^2} \leqslant \frac{1}{1+x^2} \quad (x \geqslant 0)$$
Besides, the result:
$$\lim_\limits{n \rightarrow \infty} \sqrt{n} \int_{0}^{1} (1 - x^2)^n \mathrm{d}x=\frac{\sqrt{\pi}}{2}$$
can be got by Wallis formula. And my proof is as follows:
For the two inequalities above, we have:
$$\int_{0}^{1} (1-x^2)^n \mathrm{d}x < \int_{0}^{1} e^{-nx^2} \mathrm{d}x < \int_{0}^{1} \frac{\mathrm{d}x}{(1+x^2)^n} < \int_{0}^{\infty} \frac{\mathrm{d}x}{(1+x^2)^n}$$
so
$$\sqrt{n}\int_{0}^{1} (1-x^2)^n \mathrm{d}x < \int_{0}^{\sqrt{n}} e^{-t^2} \mathrm{d}t < \sqrt{n}\int_{0}^{\infty} \frac{\mathrm{d}x}{(1+x^2)^n}$$
Then I let $n \rightarrow \infty$ and want to utilize the sandwish theorem for proof. But I don't know how to calculate the right definite integral:
$$\sqrt{n}\int_{0}^{\infty} \frac{\mathrm{d}x}{(1+x^2)^n}$$
Can you help me?