The integer $\,r$-values that yield integer coordinates are the hypotenuses of Pythagorean triples and there are
$\,2^{(n-1)}\,$ [primitive] triples for each, where $\,n\,$ is the number of distinct prime factors of $\,r.\quad$ There are $\,8\,$ pairs of integer coordinates (swapping x,y and sign) for every triple, e,g. $r=5\,\longrightarrow
$$\big\{(3,4),(4,3),(-3,4),(-4,3),(-3,-4,),(-4,-3),(3-4),(4,-3)\big\}$
To find these triples, given a hypotenuse $(C)$, we begin with a form of Euclid's formula. Then we solve for $\,k\,$ and test a defined range of $\,m$-values to see which yield integers. If no integer $\,k$-values are found, there is no [primitive] Pythagorean triple for that $\,C$-value though there may imprimitives which are multiples of triples found using factors of $C$.
$$A=m^2-k^2 \qquad B=2mk \qquad C=m^2+k^2$$
$$C=m^2+k^2\implies k=\sqrt{C-m^2}\\
\qquad\text{for}\qquad \bigg\lfloor\frac{ 1+\sqrt{2C-1}}{2}\bigg\rfloor \le m \le \lfloor\sqrt{C-1}\rfloor$$
The lower limit ensures $m>k$ and the upper limit ensures $k\in\mathbb{N}.\quad$
One hypotenuse with two distinct prime factors is $\,65=5\cdot13$ and we should expect to find
$\,2^{(2-1)}=2^1=2\,$ triples for that case.
$$C=65\implies \bigg\lfloor\frac{ 1+\sqrt{130-1}}{2}\bigg\rfloor=6 \le m \le \lfloor\sqrt{65-1}\rfloor=8\quad \\
\text{and we find} \quad m\in\{7,8\}\Rightarrow k\in\{4,1\}\\$$
$$F(7,4)=(33,56,65)\qquad \qquad F(8,1)=(63,16,65)$$
Note that solutions also include
\begin{equation}
\,13\cdot(3,4,5)=(39,52,65)\,
\text{ and }
\,5\cdot(5,12,13)=(25,60,65)
\end{equation}
so there are $\,32\,$ rational coordinate pairs for $\,C=r=65$.
If $\,r\,$ is not one of these values, then rational $\,X$-values can be found when
$\,\theta\in\big
\{0,60˚,90˚,120˚,180˚,240˚,270˚,300˚\big\}$ and rational $\,Y$-values can be found when
$\,\theta\in\big
\{0,30˚,90˚,150˚,180˚,210˚,270˚,330˚\big\}.\quad$ In any case, the only rational values to be found for these are $\,0,\pm\dfrac{1}{2},\pm1.$
$\textbf{Edit:}\,$ If you can find the angle $\theta$ of the tangent $\,\big(\frac{B}{A}\big)\,$ of any Pythagorean triple, then $X=r\cos\theta$ and $Y=r\sin\theta$ and both will be rational if $\,r\,$ is rational.
There are an infinite number of these as shown in the sample following the formula that generated them below.
\begin{align*}
&A=(2n-1)^2+2(2n-1)k\\
&B=\phantom{(2n-1)^2+{}} 2(2n-1)k+2k^2\\
&C=(2n-1)^2+2(2n-1)k+2k^2
\end{align*}
$$\begin{array}{c|c|c|c|c|c|c|}
n & k=1 & k=2 &k=3 & k=4 & k=5\\ \hline
Set_1&3,4,5 &5,12,13&7,24,25&9,40,41&11,60,6\\ \hline
Set_2&15,8,17&21,20,29 &27,36,45 &33,56,65&39,80,89\\ \hline
Set_3&35,12,37&45,28,5&55,48,73&65,72,97&75,100,125\\ \hline
Set_{4}&63,16,65&77,36,85&91,60,109&105,88,137&119,120,169\\ \hline
Set_{5}&99,20,101&117,44,125&135,72,153&153,104,185&171,140,221\\ \hline
\end{array}$$
A scatter plot of these sets is shown
here.