I need to prove that for $a>0$ and $\operatorname{Re}z>1$, $\sum_{n=1}^{\infty}\frac{1}{(a+n)^z}$ converges.
Here's where I am.
The ratio test gives
$\lim |\frac{(a+n)^z}{(a+n+1)^z}|=\lim |\frac{a+n}{a+n+1}|^z=1$, which tells me nothing.
Hints only, please.