Let $G$ be a group and $H \leq G$.
I want to prove that if
$$H \subseteq xHx^{-1} \, \forall x \in G $$
then we have $$H=xHx^{-1} \, \forall x \in G$$
What I've done:
Let $x \in G$. This implies $x^{-1} \in G$.
So we have $H \subseteq xHx^{-1} \implies Hx \subseteq xH $, and by replacing $x$ with $x^{-1}$ we get
$$H \subseteq x^{-1}Hx \implies xH \subseteq Hx.$$
So we get $xH = Hx \implies xHx^{-1} = H \, \forall x \in G$.
Is my proof correct?