The negative-$x$ postion of your solution is incorrect. If you are comfortable with hyperbolic functions, then using the substitution $\displaystyle u=\frac1x$ and noting that
$\operatorname{arccosech}$ is an odd function:
\begin{align}\int\frac{\mathrm dx}{x\sqrt{x^2+1}}
&= \int\frac{-|u|}{u\sqrt{1+u^2}}\,\mathrm du\\
&= \begin{cases} \operatorname{arcsinh} u+C_1, &u<0;\\
-\operatorname{arcsinh} u+C_2, &u>0\end{cases}\\
&= \begin{cases} \operatorname{arccosech}x+C_1, &x<0;\\
-\operatorname{arccosech}x+C_2, &x>0\end{cases}\\
&= \begin{cases} -\operatorname{arccosech}(-x)+C_1, &x<0;\\
-\operatorname{arccosech}x+C_2, &x>0\end{cases}\\
&= \begin{cases} \color{red}{-\operatorname{arccosech}|x|}+C_1, &x<0;\\
-\operatorname{arccosech}|x|+C_2, &x>0.\end{cases}
\end{align}
Addendum (noting that $\operatorname{arccosech} x\equiv\ln\left(\frac1x+\frac1{|x|}\sqrt{x^2+1}\right)$)
$$= \begin{cases} -\ln\left(\frac1{|x|}+\frac1{|x|}\sqrt{x^2+1}\right)+C_1, &x<0;\\
-\ln\left(\frac1{|x|}+\frac1{|x|}\sqrt{x^2+1}\right)+C_2, &x>0\end{cases}\\
= \begin{cases} \color{red}{-\ln\left(\frac{1+\sqrt{x^2+1}}{|x|}\right)}+C_1, &x<0;\\
-\ln\left(\frac{1+\sqrt{x^2+1}}{|x|}\right)+C_2 &x>0,\end{cases}$$ exhibiting two independent parameters to caputure the complete set of antiderivatives.
P.S. Note that all the solutions currently on this page (Quanto's, zwim's, Bob's, mine; each using a different substitution) are equivalent to one another.