Updated. Here is an alternative proof motivated by @Po1ynomial's wonderful observation. To begin with, we observe that, using the principal square root (corresponding to the choice of branch cut $(-\infty, 0]$),
Observation. For $x > 0$ and $t \in \mathbb{R}$,
$$ t = \frac{x^2 - x^{-2}}{2}
\qquad\iff\qquad
x = \frac{\sqrt{t+i} + \sqrt{t-i}}{\sqrt{2}} = \operatorname{Re}\left(\sqrt{2}\sqrt{t + i} \right). $$
So, if we denote OP's integral by $I$, then
\begin{align*}
I
&= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{e^{\pi t} + 1}} \operatorname{Re} \biggl( \frac{1}{\sqrt{t + i}} \biggr) \, \mathrm{d}t \\
&= \frac{1}{\sqrt{2}} \lim_{T \to \infty} \operatorname{Re} \biggl( \int_{-T}^{T} \frac{1}{\sqrt{e^{\pi t} + 1}} \frac{1}{\sqrt{t + i}} \, \mathrm{d}t \biggr) \\
&= \frac{1}{\sqrt{2}} \lim_{T \to \infty} \operatorname{Re} \biggl( \int_{-T + i}^{T + i} \frac{1}{\sqrt{1 - e^{\pi z}} \sqrt{z}} \, \mathrm{d}z \biggr). \tag{$z = t + i$}
\end{align*}
It is not hard to prove that $\sqrt{1 - e^{\pi z}}$ is analytic on the band $\mathbb{R} \times (0, 1]$. So, we can deform the contour $-T + i \to T + i$, without altering the value of the integral, to the piecewise contour (shown as the blue solid path below)

where $\gamma_{\varepsilon}(t) = \varepsilon e^{i(\pi - t)}$, $0 \leq t \leq \pi$, stands for the clockwise-oriented upper-semicircular arc of radius $\varepsilon \ll T$ about the origin. However, the contribution from the linear segment parts,
\begin{gather*}
\underbrace{\int_{-T + i}^{-T} \frac{1}{\sqrt{1 - e^{\pi z}} \sqrt{z}} \, \mathrm{d}z}_{=\mathcal{O}(T^{-1/2})}
+ \underbrace{\int_{-T}^{-\varepsilon} \frac{1}{\sqrt{1 - e^{\pi x}} \cdot i \sqrt{x}} \, \mathrm{d}x}_{\text{pure imaginary}} \\
\hspace{3em} + \underbrace{\int_{\varepsilon}^{T} \frac{1}{i \sqrt{e^{\pi x} - 1} \sqrt{x}} \, \mathrm{d}x}_{\text{pure imaginary}}
+ \underbrace{\int_{T}^{T+i} \frac{1}{\sqrt{1 - e^{\pi z}} \sqrt{z}} \, \mathrm{d}z}_{=\mathcal{O}(e^{-\pi T/2} T^{-1/2})} \tag{*}
\end{gather*}
is of the form $\text{[imaginary number]} + \mathcal{O}(T^{-1/2})$, hence its real part vanishes as $T \to \infty$. So, only the contribution from the circular arc $\gamma_{\varepsilon}$ survives under the limit as $T \to \infty$ and therefore
\begin{align*}
I
&= \frac{1}{\sqrt{2}} \operatorname{Re} \biggl( \int_{\gamma_{\varepsilon}} \frac{1}{\sqrt{1 - e^{\pi z}} \sqrt{z}} \, \mathrm{d}z \biggr) \\
&\quad \xrightarrow{\varepsilon \to 0^+} \frac{1}{\sqrt{2}} \operatorname{Re} \biggl( (-\pi i) \, \underset{z=0}{\mathrm{Res}} \, \frac{i}{z \sqrt{\frac{\exp(\pi z) - 1}{z}}} \biggr)
= \bbox[color:navy; background:#F0F8FD; padding:10px; border:1px dotted navy;]{\sqrt{\frac{\pi}{2}}}.
\end{align*}
Addendum. Write $ t(x) = \frac{\pi}{2}\left(x^2 - x^{-2} \right)$ for simplicity. Then numerical computations suggest the following identities:
\begin{align*}
\int_{0}^{\infty} \frac{1}{\sqrt{1 + e^{t(x)}}} \, \mathrm{d}x
&= \sqrt{\frac{\pi}{2}}, \tag{OP's integral} \\
\int_{0}^{\infty} \frac{e^{t(x)/4}}{\sqrt{1 + e^{t(x)}}} \, \mathrm{d}x
&= \frac{\sqrt{\pi}}{2} \tag{2}
\end{align*}
and
\begin{align*}
\int_{0}^{\infty} \frac{1}{1 + e^{t(x)}} \, \mathrm{d}x
&= -\frac{\zeta(\frac{1}{2})}{\sqrt{2}}, \tag{3} \\
\int_{0}^{\infty} \frac{e^{t(x)/4}}{1 + e^{t(x)}} \, \mathrm{d}x
&= -\frac{\zeta(\frac{1}{2})}{2+\sqrt{2}}, \tag{4} \\
\int_{0}^{\infty} \frac{e^{t(x)/2}}{1 + e^{t(x)}} \, \mathrm{d}x
&= -\frac{\zeta(\frac{1}{2})}{2+\sqrt{2}}, \tag{5} \\
\int_{0}^{\infty} \frac{1}{1 + e^{2t(x)}} \, \mathrm{d}x &= \frac{1}{\sqrt{2}} \biggl( 1 - \frac{\zeta(\frac{1}{2})}{2+\sqrt{2}} \biggr). \tag{6}
\end{align*}
I was able to tackle some of these integrals using similar computations as above. For example, $\text{(2)}$ can be proved quite analogously as above, and $\text{(3)}$ boils down to
$$ \int_{0}^{\infty} \frac{1}{1 + e^{t(x)}} \, \mathrm{d}x
= \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{1}{\sqrt{x}} \left( \frac{1}{\pi x} - \frac{1}{e^{\pi x} - 1} \right) \, \mathrm{d}x, $$
which can be used to verify $\text{(3)}$. Instead of verifying everything by myself, however, I'll leave (4)--(6) to other users for fun!