0

In the book of [Z.I._Borevitch,_I.R._Chafarevitch]_Théorie_des_nombres p.21 the authors talking about the construction of 7-adic integers by considering equations of type $$(C_n): x^2\equiv 2\mod 7^n$$ for $n=1$ the solution satisfy $x_0\equiv \pm 3\mod 7$. For $n=2$, the solutions $(C_2)$ are in the solutions of $(C_1)$ so he considers those of the form $x_1=3+7t_1$, and replacing in $(C_2)$ implies \begin{align*} (3+7t_1)^2&\equiv 2\mod 7^2\\ 9+6.7t_1+7^2t_1^2&\equiv 2\mod 7^2\\ 1+6t_1&\equiv 0\mod 7\\ \end{align*} For me it is not understood why $1+6t_1\equiv 0\mod 7$ ? this is my problem.

Bill Dubuque
  • 272,048

2 Answers2

0

As an intermediate step between your second and third displayed congruences, we have $(9-2)+6\cdot 7\cdot t_1 + 7^2\cdot t_1=0 \mod 7^2$. Since $7a=0 \mod 7^2$ implies $a=0\mod 7$ (!), we get $1 + 6t_1+7t_1^2=0\mod 7$. The $7t_1$ term is $0$ mod $7$, so this is $1+6t_1=0\mod 7$.

paul garrett
  • 52,465
0

Let me put in some missing steps. From $9+6\cdot7t_1+7^2t_1^2\equiv2\bmod{7^2}$ we subtract $2$ to get
$7+6\cdot7t_1+7^2t_1^2\equiv0\bmod{7^2}$ then we divide through by $7$ to get
$1+6t_1+7t_1^2\equiv0\bmod{7}$ and that gets you
$1+6t_1\equiv0\bmod{7}$.

Gerry Myerson
  • 179,216