No, not every norm is induced by an inner product.
If $\lVert\cdot\rVert$ is induced by an inner product on $\mathbb{R}^n$, i.e. $\lVert\mathbf{x}\rVert = \sqrt{\langle \mathbf{x},\mathbf{x}\rangle}$, where $\langle\cdot,\,\cdot\rangle$ is the inner product, then this norm must satisfy the parallelogram law:
$$2\lVert \mathbf{x}\rVert^2 + 2\lVert \mathbf{y}\rVert^2 = \lVert\mathbf{x}+\mathbf{y}\rVert^2 + \lVert \mathbf{x}-\mathbf{y}\rVert^2.$$
And in fact, the converse holds; that is, any norm that satisfies the parallelogram law is necessarily induced by an inner product; that inner product will be given by
$$\langle \mathbf{x},\mathbf{y}\rangle = \frac{1}{4}\left(\lVert \mathbf{x}+\mathbf{y}\rVert^2 - \lVert\mathbf{x}-\mathbf{y}\rVert^2\right),$$
which essentially uses the Polar Identities over $\mathbb{R}$; a similar but more complicated formula works for $\mathbb{C}$.
Your first norm does not satisfy the parallelogram law. For example, with $n=2$, take $\mathbf{x}=(1,0)$ and $\mathbf{y}=(0,1)$. Then
$$\begin{align*}
2\lVert\mathbf{x}\rVert^2 + 2\lVert\mathbf{y}\rVert^2 &= 2(|1|+|0|)^2 + 2(|0|+|1|)^2 = 4,\\
\lVert\mathbf{x}+\mathbf{y}\rVert^2 + \lVert\mathbf{x}-\mathbf{y}\rVert^2 &= \lVert(1,1)\rVert^2 + \lVert (1,-1)\rVert^2\\
&= (|1|+|1|)^2 + (|1|+|-1|)^2 \\
&= 4+4=8.
\end{align*}$$
Since the norm does not satisfy the parallelogram law, it cannot be induced by an inner product.