We have a given mixed CDF:
$$P(X \leq x) = 1- \alpha e^{-\mu(x-1)} \quad \text{if x $\geq 1$}$$
$$P(X \leq x) = 0 \quad \text{if x $< 1$}$$
As you can see, if $P(X=1) = 1- \alpha$
I want to get $E[X]$.
If I differentiate the CDF I get the following PDF:
$$f_x = \alpha \mu e^{-\mu (x-1)} \quad \text{if $x \geq $ 1}$$ $$f_x = 0 \quad \text{if $x < 1$}$$
So should we use the formula: $$E[X] = \int_1^{\infty} x\cdot \alpha \mu e^{-\mu(x-1)}dx$$
To get the expectation, or should we use
$f_x = \alpha \mu \quad \text{x = 1}$
and $$E[X] = \mu\alpha\cdot 1+\int_1^{\infty} x\cdot \alpha \mu e^{-\mu(x-1)}dx$$