Find the smallest prime factor of $15^3 + 17^3 + 19^3 +24^3\,\ldots $ is there a better way?
Yes, one simple method is to exploit the polynomial form of the expression. To do so we first rewrite the problem as $\,\color{#0a0}{24}^3+19^3 \equiv (\color{#0a0}{-15})^3 + (-17)^3\pmod{\!p}.\,$ One simple way for this congruence to hold is when the summands on both sides become pairwise congruent, e.g. if $\begin{align} &\color{#0a0}{24}\color{#0a0}{\equiv -15}\\ &19\equiv -17\end{align},\, $ true $\!\iff\! p\mid \gcd(\color{#0a0}{\underbrace{24\!-\!(-15)}_{\large 39}},\underbrace{19\!-\!(-17)}_{\large 36})=\gcd(3,36)=3,\,$ so
$\qquad\phantom{\Rightarrow}\ \ \ \{\color{#0a0}{24},\ \ \ \ 19\}\ \ \equiv\, \{\ \color{#0a0}{{-}15},\ \ \ {-}17\:\!\}\qquad \pmod{\! 3}\ \ $
$\qquad\Rightarrow\ \ \{24^n,\ \ 19^n\} \equiv \{(-15)^n,\ \,(-17)^n\}\, \pmod{\!3}^{\phantom{|^{|^{|^|}}}} $ via Congruence Power Rule
$\qquad\Rightarrow\ \ \ 24^n+ 19^n\ \ \equiv \ \, (-15)^n\!+(-17)^n\,\ \pmod{\!3}^{\phantom{|^{|^{|^|}}}}$
This generalizes your result to any exponent $\,n\in \Bbb N.\,$ This method proves especially handy for a composite modulus $\,pq\,$ where the pairwise congruence is swapped for each modulus, where we can exploit that addition is $\rm\color{#c00}{symmetric}$ (or ditto for any symmetric polynomial $f(x,y)\in\Bbb Z[x,y],\,$ e.g. see below). These types of problems often occur in contests and exercises.
Remark $ $ Below is a less trivial application, from this answer. More generally see here.
Show that $\, 70\mid 52^n+23^n-2^n-3^n\,$ for all $\,n\in\Bbb N$
The problem has innate $\rm\color{#c00}{symmetry}$ that greatly simplifies matters once brought to the fore.
$\qquad\phantom{\Rightarrow}\ \ \{ 52,\ \ \ \ 23\}\ \ \equiv\, \{2,\ \ \ 3\}\ \ \ \ {\rm mod}\,\ 7\ \&\ 10,\ $ since $\ \ \begin{align}&52,\,23\,\equiv\, 3,\, 2\,\bmod{7}\\ &52,\,23\,\equiv\, 2,\, 3\,\bmod{10}\end{align}$
$\qquad\Rightarrow\ \{52^n,\ \ 23^n\} \equiv \{2^n,\ \,3^n\}\,\ {\rm mod}\,\ 7 \ \&\ 10,\ $ by the Congruence Power Rule
$\qquad\Rightarrow\ \ \ 52^n\!+\! 23^n\ \ \equiv \ \ 2^n\!+3^n\ \ \,{\rm mod}\,\ 7\ \&\ 10,\ $ so also $\,{\rm mod}\ 70 = {\rm lcm}(7,10)^{\phantom{|^{|^{|^|}}}}$
since addition $\,f(x,y)\, =\, x + y\ $ is $\rm\color{#c00}{symmetric}$ $\,f(x,y)= f(y,x),\, $ therefore its value depends only upon the (multi-)set $\,\{x,\ y\}.\ $
Generally $ $ if a polynomial $\,f\in\Bbb Z[x,y]\,$ is $\rm\color{#c00}{symmetric}$ then
$$\begin{align} \{A, B\} &\equiv\, \{a,b\}\! \pmod{\!\!\ m\ \&\ n}\\[.4em] \Rightarrow\ f(A,B)&\equiv f(a,b)\!\! \pmod{\!{\rm lcm}(m,n)}\end{align}\qquad\qquad$$
a generalization of the constant-case optimization of CRT = Chinese Remainder, combined with a generalization of the Polynomial Congruence Rule to (symmetric) bivariate polynomials.