I have a constraint optimization problem formulated in a diagonal matrix form:
$ P_3:~ min_{x} \quad \|A X(t) - Y(t)\|^2 \\ \text{subject to} \quad X^*(t) \cdot X(t) = \mathbb{I} $
I need to take the partial derivative of the following function wrt x of this vectorization.
$ f(X,\Lambda) = \left[ (I \otimes A)vec X - vec Y \right]^ * \cdot \left[ (I \otimes A)vec X - vec Y \right] - \Lambda( (\mathbb{I} \otimes X^* vec X) - vec \mathbb(I))$
X,Y,A, $\Lambda$ are diagonal matrices, * is the conjugate transpose operation.
Any thoughts?