A string is at rest and in a straight line. At t = 0 it is subjected to a constant force distribution perpendicularly from above and along the entire string. This force distribution remains constant for all times $t >> 0$. Determine the wave-function of the string y = u(x, t) if it is bounded (u = 0 at the ends) and has length L. (The motion is planar: no point on the string ever leaves the xy plane.)
My suggestion:
Set the force equal to some constant , F. Then the wave-equation becomes inhomogeneous:
$$\alpha u_{xx}-u_{tt}=F\\ u_x(x,0)=0\\ u(0,t)=u(L,t)=0$$
Homogenize, by setting $u_{tt}=0$, solve the homogeneous eqn $u_{xx}=0$ and get $u(x)=Fx+C_1$
Set $v(x,t)=u(x,t)-F$ obtain the New PDE:
$$\alpha v_{xx}-v_{tt}=0\\ v_x(x,0)=F\\ v(0,t)=v(L,t)=0$$
Ansatz: $$u(x,t)=\sin\frac{n\pi}{L}xu(t)$$
Insert in PDE and get:
$$v(x,t)=\sum_{n=1}^\infty \sin\frac{n\pi}{L}x\bigg[C_2\cos\alpha\frac{n\pi}{L}t+C_3\sin\alpha\frac{n\pi}{L}t\bigg]$$
Use IC $v_x(x,0)=F$:
$$v_x(x,t)=\sum_{n=1}^\infty \frac{n\pi}{L}\cos\frac{n\pi}{L}x\bigg[-C_2\alpha\frac{n\pi}{L}\sin\alpha\frac{n\pi}{L}t+\alpha\frac{n\pi}{L}C_3\cos\alpha\frac{n\pi}{L}t\bigg]$$
$$v_x(x,t)=\sum_{n=1}^\infty \frac{n\pi}{L}\cos\frac{n\pi}{L}x\bigg[-C_2\alpha\frac{n\pi}{L}\sin0+\alpha\frac{n\pi}{L}C_3\cos0\bigg]$$
$$F=v_x(x,0)=\sum_{n=1}^\infty \bigg[\alpha\frac{n\pi}{L}\bigg]^2C_3\cos\frac{n\pi}{L}x$$
Relevant Fourier integrals:
$$\alpha_k=\frac{2}{L}\int_0^Lg(x)cos\frac{n\pi}{L}xdx$$
$$\alpha_0=\frac{1}{L}\int_0^Lf(x)dx$$
Clearly, here we see that $$g(x)=f(x)=\bigg[\alpha\frac{n\pi}{L}\bigg]^2C_3/F$$
But this does not seem correct, since I now have 2 unknown coefficients, $C_2,C_3$ and only one IC on $t$.
Using D'Alembert formula we could get:
$$u(x,t)=\frac{1}{2}\bigg(\sin\frac{n\pi}{L}(x+Ct)+\sin\frac{n\pi}{L}(x-Ct)\bigg)+Ft$$
But this seems odd.
Thanks