Let $p$ be an odd prime. Then, by Euler's theorem, I know that $$ 2^{k}\equiv 2^{k\pmod{p-1}}\pmod p. $$ From Lagrange I also know that for the order of $2$ modulo $p$ we have $ ord_p(2)|p-1 \Leftrightarrow \exists m\in\mathbb Z: m\cdot ord_p(2) = p-1.$
But how can I deduce that $$ 2^k \equiv 2^{k\pmod{p-1}} \equiv 2^{k\pmod{ord_p(2)}}\pmod p? $$
I have no idea how to reduce via the product $ m\cdot ord_p(2)$.