-6

I can't go anywhere with this. Thanks. Prove that $|a - b| \ge |a| - |b|$. Hint: apply the triangle inequality to $|a| = |(a - b) + b|$. Using the triangle inequality: $$ |a + b| \le |a| + |b| \Rightarrow $$ $$ |a + b| \le |(a - b) + b| + |b| $$

Rolomoto
  • 309
  • 1
  • 7

1 Answers1

0

Prove that $|a - b| \ge |a| - |b|$ $$|a| = |(a - b) + b|$$ Apply the triangle inequality $|a + b| \le |a| + |b|$ by substituting $(a - b)$ for $|a|$: $$|a| = |(a - b) + b| \le |a - b| + |b| \Rightarrow$$ $$|a| - |b| \le |a - b| \Rightarrow$$ $$|a - b| \ge |a| - |b|$$

Rolomoto
  • 309
  • 1
  • 7