Here is another method of computing the integral in question. It might not be a "simpler" method as you are asking and the semicircular contour method in your post is great, but I'm just writing this post for fun and for me to learn a new thing or two.
Let the given integral be $I$. Let $\displaystyle f(z)=\frac{\log\left(z^{2}+az+b\right)}{z^{2}+1}.$ Its poles are $i$ and $-i$, and its branch points are $z_1 := \displaystyle-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}$ and $\displaystyle z_2 := -\frac{a}{2}-\frac{i\sqrt{4b-a^{2}}}{2}$. But consider $z_1$ instead of $z_2$ since $z_1$ is the one the contour will enclose. Define $\displaystyle \operatorname{arg}(z-z_1) \in \left(\operatorname{arg}\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right),\operatorname{arg}\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right) + 2\pi\right)$ and $\displaystyle \operatorname{arg}(z-z_2) \in \left(-\operatorname{arg}\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right) - 2\pi,-\operatorname{arg}\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)\right)$.
Even though the branch point $z_1$ can be anywhere above the real axis, here is a visual of the contour with some fixed $a$ and $b$.

By Cauchy's Residue Theorem, we get
$$2\pi i\operatorname{Res}(f(z),z=i) = \left(\int_{-R}^{R} + \int_{\Gamma} + \int_{\lambda_1} + \int_{\gamma} + \int_{\lambda_2}\right)f(z)dz.$$
It can be proved that the integrals over $\Gamma$ and $\gamma$ go to $0$ as $R \to \infty$ and $r \to 0$ (where $r$ is the radius of the little circle). Maybe in the future, I'll write an addendum proving those two statements.
Let $\lambda_1$ be the line segment that travels from the large circular arc $\Gamma$ to the small circular arc $\gamma$, and let $\lambda_2$ be the line segment that travels in the opposite direction. As long as we don't have the case where $a=0$ and $b=1$, we can proceed with the following calculation, whether $z_1$ is in the first quadrant, second quadrant, or on the imaginary axis:
$$
\begin{align}
& \lim_{\lambda_1 \to \Lambda}\int_{\lambda_1} f(z)dz + \lim_{\lambda_2 \to \Lambda}\int_{\lambda_2} f(z)dz \\
=& \lim_{\lambda_1 \to \Lambda}\int_{\lambda_1}\frac{dz}{1+z^2}\left(\log\left|z-z_{1}\right|+\log\left|z-z_{2}\right|+i\operatorname{arg}\left(z-z_{1}\right)+i\operatorname{arg}\left(z-z_{2}\right)\right) \\
&+\lim_{\lambda_2 \to \Lambda}\int_{\lambda_2}\frac{dz}{1+z^2}\left(\log\left|z-z_{1}\right|+\log\left|z-z_{2}\right|+i\operatorname{arg}\left(z-z_{1}\right)+i\operatorname{arg}\left(z-z_{2}\right)\right) \\
=& -\int_{\Lambda}\frac{dz}{1+z^2}\left(\log\left|z-z_{1}\right|+\log\left|z-z_{2}\right|+i\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2} + 2\pi\right)+i\operatorname{arg}\left(z-z_{2}\right)\right) \\
&+\int_{\Lambda}\frac{dz}{1+z^2}\left(\log\left|z-z_{1}\right|+\log\left|z-z_{2}\right|+i\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)+i\operatorname{arg}\left(z-z_{2}\right)\right) \\
=& -2\pi i\int_{z_{1}}^{i\infty}\frac{dz}{1+z^{2}} \\
=& -2\pi i \Big[\arctan(z)\Big]_{z_1}^{i\infty} \\
=& -2\pi i\left(\frac{\pi}{2}-\arctan\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)\right). \\
\end{align}
$$
For the case where $a=0$ and $b=1$, we can refer to this answer.
Next, we can calculate the residue at the simple pole $i$ as follows:
$$2\pi i\operatorname{Res}(f(z),z=i) = 2\pi i \lim_{z\to i} \frac{\left(z-i\right)\log\left(z^{2}+az+b\right)}{\left(z-i\right)\left(z+i\right)} = \pi\log\left(b-1+ai\right).$$
Going back to the keyhole contour, we can take the appropriate limits to make the other contributions go to $0$ and solve for $I$ as follows:
$$
\begin{align}
\pi\log\left(b-1+ai\right) &= I + 0 -2\pi i\left(\frac{\pi}{2}-\arctan\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)\right) + 0 \\
I &= 2\pi i\left(\frac{\pi}{2}-\arctan\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)\right) + \pi\log\left(b-1+ai\right). \\
\end{align}
$$
Taking the real part on both sides yields
$$
\begin{align}
\Re I &= \Re 2\pi i\left(\frac{\pi}{2}-\arctan\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right)\right) + \Re\pi\log\left(b-1+ai\right) \\
&= -\Re 2\pi i\arctan\left(-\frac{a}{2}+\frac{i\sqrt{4b-a^{2}}}{2}\right) + \Re\pi\left(\log\left|b-1+ai\right|+i\operatorname{arg}\left(b-1+ai\right)\right) \\
&= \pi\ln\left(1+b+\sqrt{4b-a^{2}}\right)
\end{align}
$$
where from the second-to-last line to the last line, we make a huge leap of calculations.