The integral $$\int\frac{1}{(x^2+a^2)^m}dx$$ can be expressed by a recursive formula of $$\frac{1}{2a^2(m-1)}\frac{x}{(x^2+a^2)^{m-1}} + \frac{2m-3}{2a^2(m-1)}\int\frac{dx}{(x^2+a^2)^{m-1}}$$ I do not understand how integration by part leads to this result. Specifically, since $$\int u dv = uv - \int v du$$ I want to know what is $u$, $du$, $v$, $dv$.
-
Hint: Put $x = a\tan(\theta)$ this will simplify your integral to $\int a^{1-2m} \sec^{2-2m} (\theta)\ d\theta$. After this try integration by parts. – Utkarsh Feb 28 '23 at 14:39
-
This integral can be represented via hypergeometric function – MathStackexchangeIsNotSoBad Feb 28 '23 at 14:39
-
@MathStackexchangeIsVeryBad I think you should read body of the post again. – Utkarsh Feb 28 '23 at 14:45
-
@Utkarsh my bad...i thought the question asked to solve the integral – MathStackexchangeIsNotSoBad Feb 28 '23 at 14:59
-
Related: https://math.stackexchange.com/a/689932/1242 – Hans Lundmark Feb 28 '23 at 16:06
-
$\int \frac{1}{\left(a^2+x^2\right)^m} , dx = x \left(a^2+x^2\right)^{-m} \left(\frac{x^2}{a^2}+1\right)^m , _2F_1\left(\frac{1}{2},m;\frac{3}{2};-\frac{x^2}{a^2}\right) + C$ – gpmath Feb 28 '23 at 16:52
2 Answers
Integrate by parts as follows
\begin{align} &\int\frac{1}{(x^2+a^2)^m}dx\\ = &\int \frac1{2a^2(m-1)x^{2m-3}}\ d\left[\bigg(\frac{x^2}{x^2+a^2} \bigg)^{m-1}\right]\\ =&\ \frac{1}{2a^2(m-1)}\frac{x}{(x^2+a^2)^{m-1}} + \frac{2m-3}{2a^2(m-1)}\int\frac{1}{(x^2+a^2)^{m-1}}dx \end{align} Thus $$u= \frac1{2a^2(m-1)x^{2m-3}},\>\>\>\>\> v= \left(\frac{x^2}{x^2+a^2} \right)^{m-1} $$

- 97,352
We have $$J = \int\dfrac{dx}{(x^2+a^2)^m} = \dfrac1{a^2}\int\dfrac{(a^2+x^2)-x^2}{(x^2+a^2)^m}dx$$ and hence $$J = \dfrac1{a^2}\int\dfrac{dx}{(x^2+a^2)^{m-1}} - \dfrac1{a^2}\int\dfrac{x^2}{(x^2+a^2)^m}dx$$ which gives $$J = \dfrac1{a^2}\int\dfrac{dx}{(x^2+a^2)^{m-1}} + \dfrac{1}{2a^2(m-1)}\int x\,d\, \dfrac1{(x^2+a^2)^{m-1}}$$ Integrating by parts, we get $$J = \dfrac1{a^2}\int\dfrac{dx}{(x^2+a^2)^{m-1}} + \dfrac{1}{2a^2(m-1)} \dfrac {x}{(x^2+a^2)^{m-1}} - \dfrac{1}{2a^2(m-1)}\int \dfrac{dx}{(x^2+a^2)^{m-1}}$$ and hence $$J = \dfrac{1}{2a^2(m-1)} \dfrac {x}{(x^2+a^2)^{m-1}} + \dfrac{2m-3}{2a^2(m-1)}\int \dfrac{dx}{(x^2+a^2)^{m-1}}$$

- 8,831