This integral converges because $$ \int_{1}^{\infty} \frac{1}{\sqrt{x^3 -1}}\,dx < \int_{1}^{\infty} \frac{1}{x\sqrt{x -1}}\,dx $$ $$\int_{1}^{\infty} \frac{1}{x\sqrt{x -1}}\,dx = 2\int_{0}^{\infty} \frac{1}{u^2+1}\,dx =\pi$$ But, how to solve it?
Asked
Active
Viewed 212 times
2 Answers
4
Substitute $y=x^{-3}$ to recover a beta integral.
$$\int_1^\infty \frac{dx}{\sqrt{x^3-1}} = \int_1^\infty \frac{dx}{x^{3/2} \sqrt{1-x^{-3}}} \\ = \frac13 \int_0^1 \frac{y^{-4/3}\,dy}{y^{-1/2}\sqrt{1-y}}=\frac13 \int_0^1 y^{-5/6} (1-y)^{-1/2} \, dy$$

user170231
- 19,334
1
Using Mellin transform: $$ \int_{1}^{\infty}\frac{dx}{\sqrt{x^3-1}} = \frac{1}{3} \int_{0}^{\infty}\frac{dx}{\sqrt{u}(u+1)^{\frac{2}{3}}} \quad x^3=u+1 $$ $$\frac{1}{3} \int_{0}^{\infty}\frac{dx}{\sqrt{u}(u+1)^{\frac{2}{3}}} = \frac{1}{3}\mathcal{M}\left (\frac{1}{2}\right)\left[ \frac{1}{(u+1)^\frac{2}{3}}\right ] = \frac{\Gamma \left( \frac{1}{2} \right)\Gamma \left( \frac{1}{6} \right)}{3\Gamma \left( \frac{2}{3} \right)}$$

Guilherme Namen
- 315
It comes up with the reasonably nice $\frac{2\sqrt\pi\ \Gamma(\frac76)}{\Gamma(\frac23)}$, but I don't think you will be very happy with that.
– student91 Feb 24 '23 at 17:13