Starting from the parabola
$$ y = a x^2 $$
I want to draw it after tilting by an angle $\theta$ clockwise such that it is tangent to the positive $x$ axis and the positive $y$ axis.
To be able to draw it I need to find the location of the vertex.
Question: How can I find the vertex coordinates ?
My effort:
I've parameterized the parabola as the vector p(t) given by
$ p(t) = V + \ t \ u_1 + a t^2 \ u_2 $
where $ u_1 = [ \cos \theta , - \sin \theta ]^T $ and $ u_2 = [ \sin \theta , \cos \theta ]^T $
The tangent vector to $p(t)$ is its derivative
$p'(t) = u_1 + 2 a t \ u_2 $
At the tangency point with the $x$ axis, the dot product of $p'(t)$ with $[0, 1]^T$ is zero.
Hence,
$ 0 = (0, 1) \cdot ( u_1 + 2 a t_x \ u_2 ) = u_{1y} + 2 a t_x \ u_{2y} $
From which
$ t_x = - \dfrac{1}{2 a} \dfrac{ u_{1y} }{u_{2y} } = \dfrac{1}{2a} \tan \theta $
Similarly, at the tangency point with the $y$ axis, the dot product of $p'(t)$ with [1, 0]^T $ is zero.
Hence,
$ 0 = (1, 0) \cdot ( u_1 + 2 a t_y \ u_2 ) = u_{1x} + 2 a t_y \ u_{2x} $
From which
$ t_y = - \dfrac{1}{2a} \dfrac{ u_{1x} }{u_{2x} } = - \dfrac{1}{2 a} \cot \theta $
Next, the $y$ coordinate of the tangency point with $x$ axis is zero. Hence,
$ 0 = V_y + t_x u_{1y} + a t_x^2 u_{2y} = V_y - \dfrac{1}{2a} \tan \theta \sin \theta + a \left( \dfrac{1}{2a} \tan \theta \right)^2 \cos \theta $
And this simplifies to
$ 0 = V_y - \dfrac{1}{4a} \dfrac{ \sin^2 \theta }{ \cos \theta } $
From which
$ V_y = \dfrac{1}{4a} \dfrac{ \sin^2 \theta }{ \cos \theta } $
Similarly, the $x$ coordinate of the tangency point with $y$ axis is zero. Hence,
$ 0 = V_x + t_y \ u_{1x} + a t_y^2 \ u_{2x} = V_x - \dfrac{1}{2a} \cot \theta \cos \theta + \dfrac{1}{4 a} \cot^2 \theta \sin \theta $
And this simplifes to
$ V_x = \dfrac{1}{4a} \dfrac{\cos^2 \theta} {\sin \theta } $
Now that the vertex coordinates are known, I can draw my parabola.
Question Recap: The above method works, but is there a way to find the vertex coordinates using the algebraic equation of the parabola instead of the parametric equation ?
The algebraic equation is
$ (r - V)^T R D R^T (r - V) + b_0^T R^T (r - V) = 0 $
where $V$ is the unknown vertex, and
$ r = [x, y]^T $
$ D = \begin{bmatrix} a && 0 \\ 0 && 0 \end{bmatrix}$
$ R = \begin{bmatrix} \cos \theta && \sin \theta \\ - \sin \theta && \cos \theta \end{bmatrix} $
(note that rotation here is clockwise)
$ b_0 = [0, -1]^T $
I wasn't able to derive the vertex coordinates starting from the parabola's algebraic equation.