Following the comment of @Moishe Kohan:
Given a $2\times2$ matrix $M$, let $t=\text{tr}(M)$ be the trace of $M$, let $F=\text{tf}(M)$ be the trace-free part of $M$, so $M=\tfrac t2I+F$, and let $d=\det(F)$ be the determinant of $F$. A straightforward calculation (or Cayley-Hamilton) gives $F^2=-d\,I$, so the exponential is
$$\exp(M)=\exp(\tfrac t2)\exp(F)=\exp(\tfrac t2)\cdot\begin{cases}\cos(\sqrt d)\,I+\frac{1}{\sqrt d}\sin(\sqrt d)\,F,\quad d>0\\I+F,\quad d=0\\\cosh(\sqrt{-d})\,I+\frac{1}{\sqrt{-d}}\sinh(\sqrt{-d})\,F,\quad d<0\end{cases}$$
$$=M'=\tfrac{t'}2I+F'$$
The trace of this is
$$t'=\text{tr}(\exp(M))=\exp(\tfrac t2)\cdot\begin{cases}2\cos(\sqrt d),\quad d>0\\2,\quad d=0\\2\cosh(\sqrt{-d}),\quad d<0\end{cases}$$
and the trace-free part is
$$F'=\text{tf}(\exp(M))=\exp(\tfrac t2)\cdot\begin{cases}\frac{1}{\sqrt d}\sin(\sqrt d)\,F,\quad d>0\\F,\quad d=0\\\frac{1}{\sqrt{-d}}\sinh(\sqrt{-d})\,F,\quad d<0\end{cases}$$
which has determinant
$$d'=\det(F')=\exp(t)\cdot\begin{cases}\sin^2(\sqrt d),\quad d>0\\0,\quad d=0\\-\sinh^2(\sqrt{-d}),\quad d<0\end{cases}$$
The important part is that if $d'<0$ (or $d'=0$ and $F'\neq0$) then $t'>0$.
We can take any matrix $M$ with $d\leq0$, and multiply the two exponentials $\exp(M)=M'$ and $\exp\left(\begin{bmatrix}0&-\pi\\\pi&0\end{bmatrix}\right)=-I$, to get another matrix $M''=-M'$. This has $d''=d'\leq0$ and $F''=-F'$ but $t''=-t'<0$, so $M''$ cannot be a single exponential.
For example:
$$M''=\exp\left(\begin{bmatrix}0&-\pi\\\pi&0\end{bmatrix}\right)\exp\left(\begin{bmatrix}1&0\\0&-1\end{bmatrix}\right)$$
$$=\begin{bmatrix}-e&0\\0&-1/e\end{bmatrix}$$
$$t''=\text{tr}(M'')=-e-1/e<0$$
$$F''=\text{tf}(M'')=\frac{-e+1/e}{2}\begin{bmatrix}1&0\\0&-1\end{bmatrix}$$
$$d''=\det(F'')=-\left(\frac{-e+1/e}{2}\right)^2<0$$
Thus, the image of $\exp$ is not a group.