We know $e^ae^b=e^{a+b}$. It iss a standard property of exponentiation; that it provides an isomorphism from $(\mathbb{R},+)$ to $\mathbb{R}^+,\times)$.
However, I don't see any natural reason for this based on the definition of the exponential function $e^x=\sum^\infty_{k=0}\frac{x^k}{k!}$, or from $e^0=1, \frac{\mathrm{d}e^x}{\mathrm{d}x}=e^x$.
Is there a way to prove $e^ae^b=e^{a+b}$ from these properties? Or is it just a mathematical "coincidence"?
I would guess something along the lines of $\frac{\mathrm{d}e^ae^b}{\mathrm{d}x}=e^ae^b\frac{\mathrm{d}a}{\mathrm{d}x}+e^ae^b\frac{\mathrm{d}b}{\mathrm{d}x}=e^ae^b\frac{\mathrm{d}(a+b)}{\mathrm{d}x}$ while $\frac{\mathrm{d}e^{a+b}}{\mathrm{d}x}=e^{a+b}\frac{\mathrm{d}(a+b)}{\mathrm{d}x}$ which both satisfy $f'=(a+b)'f$.
From J.G.'s comment, I also see that $e^{a+b}=\sum^\infty_{k=0}\frac{(a+b)^k}{k!}=\sum^\infty_{k=0}\frac{\sum^\infty_{i=0}{k\choose i}a^ib^{k-i}}{k!}$ which will be equal to $\sum^\infty_{k=0}\frac{(a)^k}{k!}\sum^\infty_{k=0}\frac{(b)^k}{k!}$. Expanding both:
$\sum^\infty_{k=0}\sum^{i=k}_{i=0}\frac{a^ib^{k-i}}{i!(k-i)!}=\sum^\infty_{k=0}\frac{a^k}{k!}\sum^\infty_{k=0}\frac{b^k}{k!}$