- "do something" if $$x-f(x)<k_1 ~~~~s.t.~~~|x|>k_2$$
Perhaps the author means this:
- "do something" if $$|x|>k_2\implies x-f(x)<k_1.$$
Can I rewrite the scenario as:
- "do something" if $$x-f(x)<k_1~~~AND~~~ |x|>k_2$$ $$\implies \frac{x-f(x)}{|x|}<\frac{k_1}{k_2}$$
Given that $``D \text{ if } Q"$ and that $\color{cyan}P⟹Q$ and $Q⟹\color{violet}R,$ then:
- these are meaningful but invalid
- $D\text{ if }\color{violet}R\color\red{\quad\quad\longleftarrow\text{You meant this.}}$
- $D\text{ if }(Q⟹\color{violet}R)\color\red{\quad\quad\longleftarrow\text{You wrote this; it isn't equivalent to the previous line.}}$
- $D\text{ if }(Q\text{ implies }\color{violet}R)\color\red{\quad\quad\longleftarrow\text{You wrote this.}}$
- these are valid
- $D \text{ if }\color{cyan}P$
- $(D \text{ if }Q);\text{ therefore }(D \text{ if }\color{cyan}P)$
- $(D \text{ if }Q),\text{ which implies }(D \text{ if }\color{cyan}P)$
- this is also valid but conveys the least information as it does not claim that $(D \text{ if }Q)$ is actually true
- $(D \text{ if }Q)\text{ implies }(D \text{ if }\color{cyan}P).$
s.t.~|x|>k_2$' is not valid. – geetha290krm Feb 16 '23 at 06:12