The question is in the title.
My attempt:
Since $\Vert F(x) \Vert = \Vert F^*(x) \Vert, \forall x \in \mathbb{C^n}$, then $\Vert F(x) \Vert^2 = \Vert F^*(x) \Vert^2, \forall x \in \mathbb{C^n}$. So, $\forall x \in \mathbb{C^n}$, we have: $$\Vert F(x) \Vert^2 = \langle F(x), F(x) \rangle = \langle F^*F(x), x \rangle$$ $$\Vert F^*(x) \Vert^2 = \langle F^*(x), F^*(x) \rangle = \langle FF^*(x), x \rangle$$ And we can conclude from the equality given that: $$\forall x \in \mathbb{C^n}: F^*F(x) = FF^*(x) \implies FF^* = F^*F$$
I think my argument is false, or at least insufficient. How can i improve it?