0

$$\lim_{n\to \infty} \bigg[n-{n\over e}\bigg(1+{1\over n}\bigg)^n \bigg] $$

My solution: Can we solve this as $$\lim_{n\to \infty}{\bigg(1+{1\over n}\bigg)^n}=e$$ $$\lim_{n\to \infty} {n\over e}\bigg[e-\bigg(1+{1\over n}\bigg)^n \bigg] =0$$ Can we proceed this way? is there anyother way we can approach? Please help . Thanks in advance.

Chris
  • 748

1 Answers1

1

You can take advantage of the Taylor series of $(1+ x)^{\frac{1}{x}}$,which you can find here
So $\Big(1+\dfrac{1}{n}\Big)^n \sim e(1-\dfrac{1}{2n})$
This yields $L = \dfrac12$