$$\lim_{n\to \infty} \bigg[n-{n\over e}\bigg(1+{1\over n}\bigg)^n \bigg] $$
My solution: Can we solve this as $$\lim_{n\to \infty}{\bigg(1+{1\over n}\bigg)^n}=e$$ $$\lim_{n\to \infty} {n\over e}\bigg[e-\bigg(1+{1\over n}\bigg)^n \bigg] =0$$ Can we proceed this way? is there anyother way we can approach? Please help . Thanks in advance.