Let $X=(0,1)$ be the open unit interval and $C(X,\mathbb R)$ be the ring of continuous functions from $X$ to $\mathbb R.$For any $x\in (0,1),$let $I(x)=\{f\in C(X,\mathbb R):f(x)=0\}.$Then which of the following is true?
$(1)I(x)$ is a prime ideal.
$(2)I(x)$ is a maximal ideal.
$(3)$Every maximal ideal of $C(X,\mathbb R)$ is equal to $I(x)$ for some $x\in X.$
$(4)$ $C(X,\mathbb R)$ is an integral domain.
$I(x)$ is a Prime ideal
let $f(x),g(x)\in C(X,\mathbb R)$.For any $x\in (0,1),$ let $f(x)g(x)\in I(x)\implies f(x)g(x)=0\implies $ either $f(x)=0$ or $g(x)=0$ $\implies$ either $f(x)\in I(x)$ or $g(x)\in I.$
$I(x)$ is a prime ideal
$I(x)$ is Not an Integral domain
$f(x) = \begin{cases} 0, & \text{if 0<x $\le$ 1/2} \\ x-1/2, & \text{if 1/2$\le$ x<1} \end{cases}$
$g(x) = \begin{cases} x-1/2, & \text{if 0<x $\le$ 1/2} \\ 0, & \text{if 1/2$\le$ x<1} \end{cases}$
then $f(x)\neq 0$ and $g(x)\neq 0$,but $f(x)g(x)=0$
So, $C(X,\mathbb R)$ is Not an integral domain.
Please comment on option (2) and option (3),also check whether my arguments are correct or not?
Thank you!