First we substitute $x=u^4$ to obtain
$$\int_0^1{x^{-1/4}\over(1+x)\sqrt{1-x}}\,dx
=4\int_0^1{u^2\over(1+u^4)\sqrt{1-u^4}}\,du.$$
Then we substitute $u=1/v$ to get
$$4\int_1^\infty{v^2\over(1+v^4)\sqrt{v^4-1}}\,dv.$$
Then substitute $v=\sqrt{\tan y}$:
$$\begin{align*}
4\int_{\pi/4}^{\pi/2}{\tan y\over(1+\tan^2y)\sqrt{\tan^2y-1}}
{\sec^2y\over2\sqrt{\tan y}}\,dy
&=2\int_{\pi/4}^{\pi/2}{\sqrt{\tan y}\over\sqrt{\tan^2y-1}}\,dy \\
&=2\int_{\pi/4}^{\pi/2}{\sqrt{\sin y\cos y}\over\sqrt{\sin^2y-\cos^2y}}\,dy\\
&=\sqrt2\int_{\pi/4}^{\pi/2}{\sqrt{\sin(2y)}\over\sqrt{-\cos(2y)}}\,dy\\
&=\sqrt2\int_{\pi/4}^{\pi/2}\sqrt{-\tan(2y)}\,dy.
\end{align*}$$
Now we substitute $w=-2y$ to get
$${\sqrt2\over2}\int_{-\pi}^{-\pi/2}\sqrt{\tan w}\,dw
={1\over\sqrt2}{\pi\over\sqrt2}
={\pi\over2}$$
as needed. (The integral $\int\sqrt{\tan x}\,dx$ is standard; see for example here.)