Consider a continuous-time Markov process, described by:
$$ \dot p = A_\theta\, p \tag{1}$$
where $p \in \mathbb R^n$ is a probability vector, and $A_\theta \in \mathbb R^{n\times n}$ is a transition matrix, of rank $n-1$, parameterized by $\theta$.
Given some initial distribution $p_0$, the probability vector in time is given by:
$$ p(t,\theta) = e^{A_\theta t}\,p_0 \tag{2}$$
As $t$ increases, $p(t,\theta)$ converges to some stationary distribution $p_\theta^\infty$, the unique eigenvector of $A_\theta$ with null eigenvalue.
I want to study the Fisher information of $p(t,\theta)$ about $\theta$, so I look for its derivative:
$$\begin{align} \partial_\theta p(t,\theta) &= \partial_\theta (e^{A_\theta t}\,p_0) \\ &= t \int\limits_0^1 e^{\alpha A_\theta t} (\partial_\theta A_\theta) e^{-\alpha A_\theta t} d\alpha\ e^{A_\theta t}\, p_0 \\ &\equiv t\, B(t,\theta)\, p(t,\theta) \end{align} \tag{3}$$
I expected (¿maybe incorrectly?) the derivative $\partial_\theta p(t,\theta)$ to converge to some vector independent of $t$:
$$\begin{align} \lim_{t\rightarrow \infty} \partial_\theta p(t,\theta) &\stackrel{?}= \partial_\theta \lim_{t\rightarrow \infty} p(t,\theta) \tag{4}\\ \lim_{t\rightarrow \infty} t\, B(t,\theta)\, p(t,\theta) &\stackrel{?}= \partial_\theta p_\theta^\infty \tag{5} \end{align}$$
I know $\partial_\theta p_\theta^\infty$ is a non-zero finite vector.
Question: Are Eqs. $(4\text{ - }5)$ correct?
If YES, how is the term $t\, B(t,\theta)$ not exploding as $t\rightarrow \infty$? I fail to see how $\lim_{t\rightarrow \infty} B(t,\theta)\, p(t,\theta) \propto \frac{1}{t}$.
If NO, where did I go wrong in my reasoning?
Thank you very much